首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Azobenzene‐bridged β‐to‐β and meso‐to‐meso porphyrin nanorings were successfully synthesized by a palladium‐catalyzed Suzuki–Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di‐ and tetramers are in the alltrans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the alltrans configurations: the pure alltrans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump‐power‐dependent decay results revealed excitation energy transfer for azobenzene‐bridged zinc–porphyrin nanorings. The distances between porphyrin units of these azobenzene‐bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso‐to‐meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)–porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di‐ and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.  相似文献   

2.
The synthesis of the cyclophane-type molecular dyads 1 and 1 . Zn was accomplished by Bingel macrocyclization of porphyrin-tethered bis-malonates 5 or 5 . Zn , respectively, with C60 (Scheme). In these macrocycles, the doubly bridged porphyrin adopts a close, tangential orientation relative to the surface of the C-sphere. The porphyrin derivatives 6 and 6 . Zn with two appended, singly-linked C60 moieties were also formed as side products in the Bingel macrocyclizations. The trans-1 addition pattern of the fullerene moiety in 1 and 1 . Zn was unambiguously established by 1H- and 13C-NMR spectroscopy. Due to the close spatial relationship between the fullerene and porphyrin components in 1 and 6 and the corresponding ZnII complexes, the porphyrin fluorescence is efficiently quenched as compared to the luminescence emitted by 5 and 5 . Zn , respectively (Fig. 2). Cyclic-voltammetry studies show that the mutual electronic effects exerted by the fullerene on the porphyrin and vice versa in 1 and 1 . Zn are relatively small despite the close proximity between the porphyrin donor and the fullerene acceptor (Fig. 3).  相似文献   

3.
A new class of substituted porphyrins has been developed in which a different number of cyclometalated PtII C^N^N acetylides and polyethylene glycol (PEG) chains are attached to the meso positions of the porphyrin core, which are meant for photophysical, electrochemical, and in vitro light‐induced singlet oxygen (1O2) generation studies. All of these ZnII porphyrin–PtII C^N^N acetylide conjugates show moderate to high (ΦΔ=0.55 to 0.63) singlet oxygen generation efficiency. The complexes are soluble in organic solvents but, despite the PEG substituents, slowly aggregate in aqueous solvent systems. These conjugates also exhibit interesting photophysical properties, including near‐complete photoinduced energy transfer (PEnT) through the rigid acetylenic bond(s) from the PtII C^N^N antenna units to the ZnII porphyrin core, which shows sensitized luminescence, as shown by quenching of PtII C^N^N‐based luminescence. Electrochemical measurements show a set of redox processes that are approximately the sum of what is observed for the PtII C^N^N acetylide and ZnII porphyrin units. UV/Vis spectroscopic properties are supported by DFT calculations.  相似文献   

4.
Dopamine [DA]+ (m/z 154), DA dimer [2DA‐H]+ (m/z 307) and DA quinone [DAQ]+ (m/z 152) are detected in positive ion mode electrospray ionization mass spectrometry (ESI MS) of dopamine in 50/1/49 (vol%) water/acetic acid/methanol. H/D exchange experiments support a covalent structure of DA dimer. Thus, ESI of DA may involve 1e?, 1H+ oxidation processes followed by rapid radical dimerization. The DA quinone signal is low in ESI MS, which indicates a low efficiency of the 2e?, 2H+ oxidation reaction. On‐line electrochemistry ESI MS (EC/ESI MS) with low electrochemical cell voltage floated on high ES voltage increases electrospray current and improves sensitivity for DA. The DA quinone signal increases and DA dimer signal decreases. A new configuration of the ESI MS instrument with a cone‐shaped capillary inlet significantly enhanced sensitivity of ESI and EC/ESI MS measurements. A DA quinone‐cysteine adduct [DAQ+Cys]+ was detected in solutions of DA with cysteine (Cys). ESI MS and EC/ESI MS indicate formation of the DA quinone‐cysteine adduct by 1e? pathway. Oxidation pathways in ESI MS are relevant to biological reactivity of DA and Cys.  相似文献   

5.
合成了新型5-氟尿嘧啶修饰的自由卟啉5-(2-(5-氟尿嘧啶-3-基)乙氧基苯基)-10,15,20-三苯基卟啉(L)及其锰配合物(MnL)和锌配合物(ZnL)。通过紫外-可见光谱、红外光谱、核磁共振氢谱及高分辨质谱等手段进行了结构表征。研究了它们的荧光性质和电化学性质;应用标准磺酰罗丹明B法(SRB法)测试了目标化合物对人肺癌细胞株A549、人肝癌细胞株Bel-7402和人结肠癌细胞株HCT-8生长的抑制活性。结果表明:相同实验条件下,不同金属离子对配合物的荧光强度存在较大影响:锌配合物具有荧光猝灭的性质,而锰配合物未能观察到明显的荧光发射光谱;与自由卟啉和锌配合物相比,锰配合物除卟啉环发生氧化还原反应外,Mn~(2+)自身也发生了氧化还原反应;抗癌活性测试显示锰配合物较其他2种化合物有较好的抗癌活性。  相似文献   

6.
We report the synthesis and physical properties of novel fullerene–oligoporphyrin dyads. In these systems, the C‐spheres are singly linked to the terminal tetrapyrrolic macrocycles of rod‐like meso,meso‐linked or triply‐linked oligoporphyrin arrays. Monofullerene–mono(ZnII porphyrin) conjugate 3 was synthesized to establish a general protocol for the preparation of the target molecules (Scheme 1). The synthesis of the meso,meso‐linked oligopophyrin–bisfullerene conjugates 4 – 6 , extending in size up to 4.1 nm ( 6 ), was accomplished by functionalization (iodination followed by Suzuki cross‐coupling) of the two free meso‐positions in oligomers 21 – 23 (Schemes 2 and 3). The attractive interactions between a fullerene and a ZnII porphyrin chromophore in these dyads was quantified as ΔG=−3.3 kcal mol−1 by variable‐temperature (VT) 1H‐NMR spectroscopy (Table 1). As a result of this interaction, the C‐spheres adopt a close tangential orientation relative to the plane of the adjacent porphyrin nucleus, as was unambiguously established by 1H‐ and 13C‐NMR (Figs. 9 and 10), and UV/VIS spectroscopy (Figs. 13–15). The synthesis of triply‐linked diporphyrin–bis[60]fullerene conjugate 8 was accomplished by Bingel cyclopropanation of bis‐malonate 45 with two C60 molecules (Scheme 5). Contrary to the meso,meso‐linked systems 4 – 6 , only a weak chromophoric interaction was observed for 8 by UV/VIS spectroscopy (Fig. 16 and Table 2), and the 1H‐NMR spectra did not provide any evidence for distinct orientational preferences of the C‐spheres. Comprehensive steady‐state and time‐resolved UV/VIS absorption and emission studies demonstrated that the photophysical properties of 8 differ completely from those of 4 – 6 and the many other known porphyrin–fullerene dyads: photoexcitation of the methano[60]fullerene moieties results in quantitative sensitization of the lowest singlet level of the porphyrin tape, which is low‐lying and very short lived. The meso,meso‐linked oligoporphyrins exhibit 1O2 sensitization capability, whereas the triply‐fused systems are unable to sensitize the formation of 1O2 because of the low energy content of their lowest excited states (Fig. 18). Electrochemical investigations (Table 3, and Figs. 19 and 20) revealed that all oligoporphyrin arrays, with or without appended methano[60]fullerene moieties, have an exceptional multicharge storage capacity due to the large number of electrons that can be reversibly exchanged. Some of the ZnII porphyrins prepared in this study form infinite, one‐dimensional supramolecular networks in the solid state, in which the macrocycles interact with each other either through H‐bonding or metal ion coordination (Figs. 6 and 7).  相似文献   

7.
Competitive oxygenation of cyclooctene and tetralin with sodium periodate catalyzed by Mn(III)(TPP)OAc, TPP = meso-tetraphenylporphyrin; Mn(III) (TNP)OAc, TNP =meso-tetrakis(1-naphthyl) porphyrin; Mn(III) (TMP)OAc, TMP =meso-tetrakis(2,4,6-trimethyl-phenyl)porphyrin; Mn(III) (TDCPP)OAc, TDCPP =meso-tetrakis(2,6-dichlorophenyl) porphyrin, and Mn(III) (TPNMe2-TFPP)OAc, TPNMe2-TFPP =meso-tetrakis(para-NMe2-tetrafluorophenyl)porphyrin, was carried out in the presence or absence of imidazole. This study showed that, in the absence of imidazole, selectivity for epoxide formation was high with electron-rich catalysts such as Mn(TPP)OAc, Mn(TNP)OAc and Mn(TMP)OAc, but low with electron-deficient catalysts such as Mn(TDCPP)OAc and Mn(TPNMe2-TFPP)OAc. Presumably, not only the axial ligation of imidazole to the four-coordinate Mn(III)-center, but also the steric and electronic influences of aryl-substituents on the porphyrin periphery affect the selectivity of the catalytic oxidation reaction.  相似文献   

8.
In this paper, the interaction between squarylium cyanine and porphyrin in chloroform is investigated by absorption and fluorescence spectroscopy. Emphasis has been put on the mechanism of intermolecular energy transfer. The overlap integral J between the absorption spectrum of squarylium cyanine and the fluorescence spectrum of porphyrin was calculated, which reveals that the singlet-singlet energy transfer may occur from porphyrin to squarylium cyanine in solution. In comparison of the observed rate constant [kqII=6.1 ×1013 (mol/L)-1·s-1] for fluorescence quenching of porphyrin by squarylium cyanine with the diffusion rate constant in chloroform [kdif=1.1×1010 (mol/L)-1·s-1] and the rate of energy transfer [ket≤6.7×104 (mol/L)-1·s-1 in the experimentally dilute solutions] estimated from Forster formula, the possibility of energy transfer by electron exchange or/and coulombic mechanism could be excluded. So it has been definitely convinced that the intermolecuiar energy transfer between them is  相似文献   

9.
The phenomena of the high affinity of porphyrins to the human serum proteins, albumin, high-density lipoproteins (HDL) and low-density lipoproteins (LDL) is well established. Yet, evaluation of the activities of these proteins as endogenous porphyrin carriers, especially with respect to receptor-mediated porphyrin uptake into tumor cells, the merits of which are still in dispute, requires more quantitative protein-porphyrin binding data. As a continuation of previous studies on this issue, the binding of several porphyrin systems to each of the three proteins, employing previously developed spectral methodologies, was studied. The specific systems reported here are hematoporphyrin ester (HPE), which is a novel hematoporphyrin derivative (HPD)-like system, two porphyrin trimers (denoted O1 and O2) and a porphyrin dimer (denoted O3) isolated from HPE. Human serum albumin (HSA) was found to have a single high-affinity site for the monomeric components of HPE, with an equilibrium binding constant of 3.6 × 106. The equilibrium parameters determined for the binding of the three HPE-isolated oligomers to each of the serum proteins are: (1) Binding constants (Kb') of 2.3 × 106, 6.9 × 104 and 1.5 × 104 and number of sites per protein molecule (n) of 3, 1 and 5, for the binding of 01, 02 and 03, respectively, to HSA. (2) Kb’values of 15.5 × 103, 15.3 × 103 and 6.6 × 103 and n values of 1, 2 and 2, for the binding of O1, O2 and O3, respectively, to HDL. (3) Kb’values of 3.3 × 103, 2.28 × 104 and 8.0 × 103 and n values of 50, 20 and 16 for the binding of O1, O2 and O3, respectively, to LDL. These data are direct and clear support not only for the high affinity of porphyrins to serum proteins but specifically of stable oligomers that have been assigned critical roles in the photodynamic treatment of tumors. Of the three proteins, LDL is clearly the best camer, providing the highest drug payload with a moderate affinity (enough to bind and not too much to prevent release). These data are suggested to be promising for the postulated role of LDL in porphyrin uptake into tumor cells and to be useful in the future as benchmarks for novel porphyrin systems.  相似文献   

10.
Two porous porphyrin‐based covalent triazine frameworks (PCTFs), in which porphyrin is incorporated as building block, have been synthesized by the Friedel–Crafts reaction. The copolymer PCTFs show large Brunauer–Emmett–Teller specific surface area of up to 1089 m2 g?1, high CO2 uptake capacity reaching 139.9 mg g?1 at 273 K/1.0 bar, and good selectivity for CO2/CH4 adsorption attaining 6.1 at 273 K/1.0 bar. The resulting porous solids also can be used as matrices for drug delivery of ibuprofen in vitro. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2594–2600  相似文献   

11.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

12.
Metallophilic interactions between closed-shell metal ions are becoming a popular tool for a variety of applications related to high-end materials. Heavier d8 transition-metal ions are also considered to have a closed shell and can be involved in such interactions. There is no systematic investigation so far to estimate the structure and energy characteristics of metallophilic interactions in AgII/AgII (d9/d9), AgIII/AgIII (d8/d8), and mixed-valent AgII/AgIII (d9/d8) complexes, which have been demonstrated in the present study. Both interporphyrinic and intermetallic interactions were investigated on stepwise oxidation by using a rigid ethene-bridged cis silver(II) porphyrin dimer and the results compared with those for highly flexible ethane-bridged analogues. By controlling the nature of chemical oxidants and their stoichiometry, both 1e and 2e oxidations were done stepwise to generate AgII/AgIII mixed-valent and AgIII/AgIII porphyrin dimers, respectively. Unlike all other ethene-bridged metalloporphyrin dimers reported earlier, in which 2e oxidation stabilizes only the trans form, such an oxidation of silver(II) porphyrin dimer stabilizes only the cis form because of the metallophilic interaction. Besides silver(II) ⋅⋅⋅ silver(II) interactions in cis silver(II) porphyrin dimer, stepwise oxidations also enabled us to achieve various hitherto-unknown silver(II) ⋅⋅⋅ silver(III) and silver(III) ⋅⋅⋅ silver(III) interactions, which thereby allow significant modulation of their structure and properties. The strength of Ag ⋅⋅⋅ Ag interaction follows the order AgII/AgII (d9/d9)<AgII/AgIII (d9/d8)<AgIII/AgIII (d8/d8). Single-crystal XRD, X-ray photoelectron spectroscopy (XPS), 1H NMR and EPR spectroscopy, and variable-temperature magnetic investigations revealed various oxidation states of silver and metallophilic interactions, which are also well supported by computational analysis.  相似文献   

13.
《Chemphyschem》2004,5(1):57-67
Excitation‐energy transport (EET) phenomena in mesomeso directly linked Zn(II )porphyrin arrays in the singlet and triplet excited states were investigated with a view to electronic coupling strength and coherence length by steady‐state and time‐resolved spectroscopic measurements. To investigate energy transfer in the triplet states, we modified the Zn(II )porphyrin arrays with bromo substituents at both ends. The coupling strength of the Soret bands of the arrays was estimated to be about 2200 cm?1, and that of the Q bands is about 570 cm?1. The coherence length in the S1 state of the Zn(II )porphyrin arrays was determined to be 4–5 porphyrin units, which is comparable to that of the well‐ordered two‐dimensional circular structure B850 in the peripheral light‐harvesting antenna (LH2) in photosynthetic purple bacteria. This indicates that the Zn(II )porphyrin arrays are well suited for mimicking natural light‐harvesting antenna complexes. On the other hand, the rate of energy transfer in the triplet state is estimated to be on the order of 100 μs?1, and the very weak coupling between the triplet states (ca. 0.003 cm?1), indicates that the triplet excitation energy is essentially localized on a single porphyrin moiety.  相似文献   

14.
Two series of linearly conjugated hybrid materials, consisting of (E)-1,2-diethynylethene (DEE; hex-3-ene-1,5-diyne) and ZnII porphyrin components, were prepared by Pd0-catalyzed cross-coupling reactions. In one series, one or two DEE substituents were introduced into the meso-positions of the ZnII porphyrins, leading from 5 ⋅ Zn , to 9 and 1 (Scheme 1). The second series contains the linearly π-conjugated molecular rods 1 – 3 that span a length range from 23 Å ( 1 ) to 53 Å ( 3 ) (Fig. 1). The larger rods 2 and 3 consist of two or three porphyrin moieties, respectively, that are bridged at the meso-positions by trans-enediynediyl (hex-3-ene-1,5-diyne-1,6-diyl) linkers (Scheme 2). The UV/VIS spectra in the series 5 ⋅ Zn , 9 , and 1 (Fig. 2) showed a strong bathochromic shift of both Soret and Q bands of the ZnII porphyrin as a result of the addition of DEE substituents. Upon changing from 1 to 2 (Fig. 3), the Q band was further bathochromically shifted, whereas the Soret band remained nearly at the same position but became broadened and displayed a shoulder on the lower-wavelength edge as a result of excitonic coupling. The close resemblance between the UV/VIS spectra of 2 and 3 suggests that saturation of the optical properties in the oligomeric series already occurs at the stage of dimeric 2 . Stationary voltammetric investigations showed that the DEE substituents act as strong electron acceptors which induce large anodic shifts in the first reduction potential upon changing from 5 ⋅ Zn to 9 (ΔE=190 mV) and to 1 (ΔE=340 mV). Increasing the number of porphyrin moieties upon changing from 1 to 2 had no effect on the first reduction potential yet the first oxidation potential was substantially lowered (ΔE=110 mV). Large differences in the potentials for one-electron oxidation of the two porphyrin moieties in 2 (ΔE=200 mV) confirmed the existence of substantial electronic communication between the two macrocycles across the trans-enediynediyl bridge.  相似文献   

15.
A simple, one‐step, supramolecular strategy was adopted to synthesize SnIV‐porphyrin‐based axially bonded triads and higher oligomers by using meso‐pyridyl SnIV porphyrin, meso‐hydroxyphenyl‐21,23‐dithiaporphyrin, and RuII porphyrin as building blocks and employing complementary and non‐interfering SnIV?O and RuII ??? N interactions. The multiporphyrin arrays are stable and robust and were purified by column chromatography. 1H, 1H–1H COSY and NOESY NMR spectroscopic studies were used to unequivocally deduce the molecular structures of SnIV‐porphyrin‐based triads and higher oligomers. Absorption and electrochemical studies indicated weak interaction among the different porphyrin units in triads and higher oligomers, in support of the supramolecular nature of the arrays. Steady‐state fluorescence studies on triads indicated the possibility of energy transfer in the singlet state from the basal SnIV porphyrin to the axial 21,23‐dithiaporphyrin. However, the higher oligomers were weakly fluorescent due to the presence of heavy RuII porphyrin unit(s), which quench the fluorescence of the SnIV porphyrin and 21,23‐dithiaporphyrin units.  相似文献   

16.
The redox and spin versatilities of manganese–porphyrin complexes [MnIIP] are examined to construct a redox‐switchable device. The electronic structure of [MnIIIP]+ was analyzed by using wavefunction‐based calculations (complete active spaces plus single excitations on top of the active spaces, that is, CAS+singles). A non‐negligible σ‐type electron‐transfer configuration is present in the [MnIIIP]+ S=2 ground state. By contrast, the [MnIIP.]+ valence tautomer is a purely π‐type intramolecular charge transfer, thus reflecting an S=3 spin state as a result of the strong ferromagnetic interaction (J=30 meV) between the S=5/2 MnII ion and the S=1/2 porphyrin radical cation P.+. The change of the redox‐sensitive site in the valence tautomer leads to a ‘triangular scheme’ that involves a critical step in which a simultaneous electron transfer and spin change are expected to induce bistability. From the wavefunction inspection, a meso‐substituted porphyrin candidate was designed to support this scenario. The complete active‐space second‐order perturbation theory (CASPT2) adiabatic energy difference between the S=2 and the S=3 spin states was reduced down to 0.15 eV, thereby giving rise to a metastable S=3 state characterized by a 0.10 Å extension of the porphyrin cavity radius. These results not only confirm the rather versatile nature of these inorganic systems but also demonstrate that redox and spin changes are intermingled in this class of compounds and can be used for applied devices.  相似文献   

17.
The synthesis of a new series of free‐base, NiII and ZnII 2,3,12,13‐tetra(ethynyl)‐5,10,15,20‐tetraphenyl porphyrins is described. Upon heating, two of the four ethynyl moieties undergo Bergman cyclization to afford the monocyclized 2,3‐diethynyl‐5,20‐diphenylpiceno[10,11,12,13,14,15‐jklmn]porphyrin in 30 %, 10 %, and trace yields, respectively. The structures of all products were investigated by using quantum chemical calculations and the free‐base analogue was isolated and crystallized; all compounds show significant deviation from the idealized planar structure. No fully‐cyclized bispiceno[20,1,2,3,4,5,10,11,12,13,14,15‐fghij]porphyrin was isolated from the reaction mixture. To understand why only two of the four enthynyl groups undergo Bergman cyclization, the reaction coordinates were examined by using DFT at the PWPW91/cc‐pVTZ(‐f) level coupled to a continuum solvation model. The barrier to cyclization of the second pair of ethynyl groups was found to be 5.5 kcal mol?1 higher than the first, suggesting a negative cooperative effect and significantly slower rate for the second cyclization. Cyclization reactions for model porphyrin–enediynes with ethene‐ and H‐functionality substitutions at the meso‐phenyl rings were also examined, and found to have a similar barrier to diradical formation for the second cyclization event as for the first in these highly planar molecules. By enforcing an artificial 30° cant in two of the pyrrole rings of the porphyrin, the second barrier was increased by 2 kcal mol?1 in the ethene model system; this suggests that the disruption of the π conjugation of the extended porphyrin structure is the cause of the increased barrier to the second cyclization event.  相似文献   

18.
A vanadium porphyrin, V(O)TMeOPP ( 1 ; TMeOPP=5, 10, 15, 20‐tetrakis(4‐methoxyphenyl)‐21 H, 23H‐porphyrin), has been synthesized by solvothermal reactions and characterized by single‐crystal X‐ray diffractions at room temperature and low temperature to reveal two different structures 1R and 1L , respectively. Both 1R and 1L crystallized in the orthorhombic system, but their space groups were different: Pbca and Pca21 for 1R and 1L , respectively. The cell parameters of a, b, and c were different and the cell volume of 1R was larger than that of 1L by circa 200 Å3. 1R and 1L were characteristic of an isolated motif with a five‐coordinate vanadium(IV) ion and a saddle‐distorted nonplanar porphyrin macrocycle. Molecules of 1R were interconnected through hydrogen‐bonding interactions to yield a 3D framework; whilst for the low‐temperature phase 1L , there were more hydrogen‐bonding interactions that link the molecules to construct a more‐complex 3D supramolecular network. In a solution of acetone, the title compound exhibited purple and green colors at room temperature and low temperature, respectively, which is unprecedented for vanadium porphyrins. The spectral data of UV/Vis, FT‐IR, and MALDI‐TOF‐MS of 1R and 1L are reported together with the electrochemical data.  相似文献   

19.
Azoesters of the typePhR 1R2CN=NCR 2R1Ph(R 1=alkyl,R 2=rest of carboxylic acids) were synthesized; their 10h-half-life-temperatures and energies of activation of the decomposition were determined. The decomposition of the azo compounds follows a law of first order. The variation of the substituentsR 1 andR 2 gives information about the effect on the decomposition of the azo compounds. The azoesters of acetic acid are outstanding by low temperatures of decomposition and are situated in the range of azoisobutyronitrile.
  相似文献   

20.
Self-assembly of porphyrins is a fascinating topic, not only for mimicking chlorophyll assemblies in photosynthetic organisms, but also for the potential of creating molecular-level devices. Herein, zinc porphyrin derivatives bearing a meta-pyridyl group at the meso position were prepared and their assemblies studied in chloroform. Among the porphyrins studied, one with a carbamoylpyridyl moiety gave a distinct 1H NMR spectrum in CDCl3, which allowed the supramolecular structure in solution to be probed in detail. Ring-current-induced chemical-shift changes in the 1H NMR spectrum, together with vapor-pressure osmometry and diffusion-ordered NMR spectroscopy, among other evidence, suggested that the porphyrin molecules form a trimer with a triangular cone structure. Incorporation of a directly linked porphyrin–ferrocene dyad with the same assembling properties in the assemblies led to a rare example of a light-harvesting/charge-separation system in which an energy gradient is incorporated and reductive quenching occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号