首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
The collective dynamics of an annulus dusty plasma formed between a co-centric conducting (non-conducting) disk and ring configuration is studied in a strongly magnetized radiofrequency (rf) discharge. A superconducting electromagnet is used to introduce a homogeneous magnetic field to the dusty plasma medium. In the absence of the magnetic field, the dust grains exhibit thermal motion around their equilibrium position. The dust grains start to rotate in the anticlockwise direction with increasing magnetic field (B > 0.02 T ), and the constant value of the angular frequency at various strengths of the magnetic field confirms the rigid body rotation. The angular frequency of dust grains linearly increases up to a threshold magnetic field (B > 0.6 T ) and after that its value remains nearly constant in a certain range of magnetic field. Further increase in magnetic field (B > 1 T ) lowers the angular frequency. Low value of the angular frequency is expected by reducing the width of the annulus dusty plasma or the input rf power. The azimuthal ion drag force due to the magnetic field is assumed to be the energy source which drives the rotational motion. The resultant radial electric field in the presence of a magnetic field determines the direction of rotation. The variation of floating (plasma) potential across the annular region at given magnetic field explains the rotational properties of the annulus dusty plasma in the presence of a magnetic field.  相似文献   

2.
The excitation of low frequency modes of oscillations in a magnetized bi-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found. With multiple ion species or charged dust present, a number of different circularly polarized modes can be excited. The stability of these modes is investigated as a function of the plasma parameters. The modulational instabilities of large amplitude normal modes, modified by the extra ion species or dust and propagating along the magnetic field, are also investigated Article presented at the International Conference on the Frontiers of Plasma Physics and Technology, 9–14 December 2002, Bangalore, India.  相似文献   

3.
The nonlinear dust acoustic solitary waves in a magnetized dusty plasma with nonthermal ions and variable dust electric charge is studied analytically. Using reductive perturbation method the Zakharov‐Kuznetsov (ZK) equation is derived and effect of nonthermal coefficient, external magnetic field, and variable dust electric charge on the amplitude and width of soliton in dusty plasma is investigated. With increasing the rate of dust charge variation with respect of plasma potential, the amplitude of generated solitary waves in magnetized dusty plasma increases to a constant magnitude while its width decreases. Increasing the nonthermal ions coefficient leads to a noticeable decrease in the amplitude of solitons while the width of soliton increases. The amplitude of generated solitary waves in such a dusty plasma is independent of applied external magnetic field but we will have more localized solitons with increasing the external magnetic field strength. It is found that solitons are strongly influenced by the direction of external magnetic field. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We investigate the parallel streaming effects on the dispersion characteristics of a kinetic Alfvén wave (KAW) in a low β dusty magnetoplasma. To analyse the influence of streaming ions obeying generalized (r, q) distribution function, hot and magnetized electrons, and mobile charged dust, a theoretical approach has been used for the instability analysis by employing two potential theories. A linear kinetic dispersion relation of Alfvén waves is derived, whose solutions are used to interpret the numerical and analytical results. The solutions of dispersion relation indicate that the characteristics of KAWs are transformed when generalized (r, q) distribution function is employed instead of its Maxwellian counterpart. We also found that the unstable modes have a strong dependence on spectral indices r and q , dust parameters, and plasma β . For the excitation of KAWs, the streaming velocity has been observed to be within the sub-Alfvén range, whereas when it extends to the super-Alfvén range, the growth rates are significantly suppressed. The observations further show that an ambient magnetic field and superthermal particles inhibit the growth of an electromagnetic wave to a significant degree and have a stabilizing effect on the wave mode, whereas an increasing concentration of low-energy particles contributes to enhancing growth rates.  相似文献   

5.
Filamentation phenomenon is one of the most important outcomes of applying a strong magnetic field to low-pressure plasmas and dusty plasmas. In this article, the variation of filamentation phenomenon with neutral gas pressure and plasma density will be investigated using numerical simulations. It will be shown through these simulations how the formation of the filamentary patterns in the magnetized plasma results in a localized electric field structure that strongly contributes to the properties of the filamentary patterns. Based on the results of the simulations, a theoretical model is derived that relates the width of the filamentary patterns to the plasma density. The model has been successfully employed to predict the width of the patterns emerging in various simulations of the magnetized plasma.  相似文献   

6.
Multidimensional instability of dust‐acoustic solitary wave (DASW) in magnetized dusty plasma with superthermal electrons and ions and micron size hot dust particles is investigated. The Zakharov‐Kuznetsov (ZK) equation, describing the small but finite amplitude DASW, was derived using the reductive perturbation method and its solitary answers was introduced. Effects of electrons and ions superthermality as well as the external magnetic field on the nature of DASW are discussed in detail. Dispersion relation, threshold condition, and growth rate of multidimensional instability of DASW were derived using small‐k (long wavelength plane wave) perturbation expansion method. We found that the direction and strength of external magnetic field extremely affect the growth rate and instability criterion. Results show that growth rate of instability decreases with increasing the number of superthermal electrons and increases with increasing the number of superthermal ions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
AK Banerjee  MN Alam  AA Mamun 《Pramana》2001,56(5):643-656
Obliquely propagating altra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfvén mode propagating parallel to the external magnetic field and dustmagnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfvén mode these effects play no role, but in obliquely propagating dust-Alfvén mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role.  相似文献   

8.
张丽萍  薛具奎 《中国物理》2005,14(10):2052-2060
The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are investigated. A linear dispersion relation is obtained. The numerical results show that the external magnetized field, fast ions and nonadiabatic dust charge fluctuation have strong influence on the frequency and the damping of wave.  相似文献   

9.
A kinetic formulation is developed to investigate low‐frequency dust ion acoustic waves (DIAWs) and dust acoustic waves (DAWs) as well as numerically for a four‐component, collisionless, unmagnetized dusty plasma, using the linearized Vlasov–Poisson model for species obeying the Maxwellian distribution. In particular, the dynamics of low‐frequency DIAWs is investigated by considering two cases. In the first case, ions and positive dust particles are assumed to be dynamically adiabatic while the negative dust particles are static in the background. In second case, the ions are taken adiabatic, while both positive and negative dust particles are static in the background. For DAWs, the ions are assumed to be isothermal, while both positive and negative dust species are considered adiabatic. Electrons are assumed to be isothermal in all cases. The linear characteristics and Landau damping rates for DIAWs and DAWs are investigated with effects of the dust particle concentrations and different temperature ratios. It is noted that for higher values of positive dust concentration, DIAWs (DAWs) are less (more) damped. It is also observed that the damping rate increases (decreases) as Ti approaches Te for DIAWs (DAWs). It is worth adding here that the theoretical results presented here are supported by numerical analyses and illustrations. The relevance of the study to laboratory and cosmic plasmas is also pointed out.  相似文献   

10.
《Physics letters. A》2001,286(6):418-422
The three-dimensional structure of the wake potential due to ion cyclotron wave in a dusty magnetized plasma with streaming ions is studied. The analysis includes the E×B drift effect in addition to the ions flow with a constant velocity uio perpendicular to the magnetic field. The result shows that the magnitude of wake potential behind a dust grain is much increased for strongly magnetized plasma.  相似文献   

11.
The linear and nonlinear properties of dust-electron acoustic waves (DEAWs) propagating in magnetized, collisionless, dusty plasma system containing inertial cold electrons, Maxwellian hot electrons, nonthermal ions, and arbitrarily (positively or negatively) charged stationary dust are investigated. The reductive perturbation technique is employed to reduce the basic set of fluid equations to the modified Korteweg-de Vries equation or Ostrovsky's equation, which governs the dynamics of small amplitude DEAWs in a weakly magnetized dusty nonthermal plasma. The approximate analytical as well as numerical solutions reveal that the basic characteristics of DEA nonlinear structures are found to be significantly modified by the key plasma configuration parameters. It is found that the leading compressive or rarefactive solitary wave structure separates from a trailing wave packet during a considerable time under the influence of magnetic field-induced Lorentz force.  相似文献   

12.
Theoretical investigation has been made on two different ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two-fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned.  相似文献   

13.
Stimulated Brillouin backscattering (SBBS) from a magnetized homogeneous plasma is investigated. Effect of a dc–magnetic field on SBBS growth rate is obtained and compared with that for non–magnetized plasmas. Numerical calculations show an increase in the instability growth rate for small magnetic fields, then a decrease in the growth rate as the magnetic field increases till a cut–off field is reached, beyond which SBBS is brought to stability. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The acceleration of charged dust grains by a high energy ion beam is investigated by obtaining the dispersion relation. The Cherenkov and cyclotron acceleration mechanisms of dust grains are compared with each other. The role of dusty plasma parameters and the magnetic field strength in the acceleration process are discussed. In addition, the stimulated waves by an ion beam in a fully magnetized dust–ion plasma are studied. It is shown that these waves are unstable at different angles with respect to the external magnetic field. It is also indicated that the growth rates increase by either increasing the ion and dust densities or decreasing the magnetic field strength. Finally, the results of our research show that the high energy ion beam can accelerate charged dust grains.  相似文献   

15.
薛具奎  郎和 《中国物理》2003,12(5):538-541
The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).  相似文献   

16.
A theoretical investigation has been made of ultra-low-frequency dust-electrostatic and dust-electromagnetic modes, propagating perpendicular to the external magnetic field, in a self-gravitating, warm, magnetized, two fluid dusty plasma system. It has been shown that the effects of self-gravitational field and dust thermal pressure significantly modify the dispersion properties of these ultra-low-frequency dust-modes. It is also found that under certain conditions, the self-gravitational effect can destabilize these ultra-low-frequency dust-electrostatic and dust-electromagnetic modes. However, the effects of the external magnetic field and dust and ion thermal pressures are found to play stabilizing role, i.e., these effects make these modes stable and counter the gravitational condensation of the dust grains. The implications of these results to some space and astrophysical dusty plasma systems, especially, to planetary ring-systems and cometary tails, are briefly mentioned. Received 16 December 1999  相似文献   

17.
Dust ion-acoustic waves propagation in the magnetized dusty plasma including ions, electrons and dust particulates are studied by using kinetic equation. For unbounded and collisionless plasma and in the presence of uniform external magnetic field B0, electrons and ions with Lorentzian distribution function and dust particles with Maxwellian one are considered. Calculating dielectric tensor through the Vlasov equation solution, in the parallel propagation, dispersion relation is derived and suprathermal particle effects on the Landau damping is studied. It is shown that the Landau damping effect vanishes for parallel propagation.  相似文献   

18.
The formation of dusty plasma structures has been experimentally investigated in a cylindrical dc discharge in axial magnetic fields up to 2500 G. The rotation of the dusty plasma structures about the discharge symmetry axis with a frequency depending on the magnetic field has been observed. When the field increases to 700 G, the displacement of dust particles from the axial region of the discharge to the periphery, along with the continuation of the rotation, has been observed. The kinetic temperatures of the dust particles, the diffusion coefficients, and the effective nonideality parameter have been determined for various magnetic fields. The explanation of the features in the behavior of the dust particles in the discharge in the magnetic field has been proposed on the basis of the analysis of ambipolar diffusion in the magnetized plasma. The maximum magnetic field at which the levitation of the dust particles in the discharge is possible has been estimated.  相似文献   

19.
"荧光-1"实验装置物理设计   总被引:5,自引:0,他引:5       下载免费PDF全文
本文主要介绍"荧光-1"实验装置物理参数设计, 并依据半经验公式预估在实验装置上可能达到的磁化等离子体状态参数. 理论设计结果表明: "荧光-1"实验装置最大放电电流1.5 MA, 四分之一周期3 μs, 最大反向磁场4 T; 以此为实验平台, 当θ箍缩线圈内充气压力50 mTorr(D2气体)时, 形成的等离子体靶直径约为2 cm, 长度17 cm; 等离子体靶密度6.6×1016 cm-3, 温度 (Ti+Te) 约300 eV; 等离子体平均β值为0.95. 该状态参数接近磁化靶聚变所要求的等离子体靶初始状态参数. 关键词: 脉冲功率技术 反场构形 磁化等离子体 磁化靶聚变  相似文献   

20.
We have reported a theoretical study on the interaction mechanism between dust particles in the presence of asymmetric ion flow and an external magnetic field in complex plasma. The recent experimental and numerical results on the particle-wake interaction ensures the dominance of the wake effect in the subsonic regime of plasma flow using the cold ion approximation. The recent developments in dusty plasma research and its growing interest towards more realistic magnetized dusty plasma scenarios also demand serious attention to study the wake effect both in the sub and supersonic regimes in the presence of a magnetic field. It is a challenging task to develop a correct, quantitative theory of wake potential for different regimes of magnetic field and ion flow velocity. Analytic expressions for the wake potential have been reported in this paper for both subsonic and supersonic regimes in the presence of an external magnetic field along with Debye-Hückel type potentials. The results show that the wake potential plays a dominant role in the subsonic regime and its strength increases with an increase in magnetic field. The behaviour of the wake potential is found to have an interesting effect on the Coulomb crystallization of dust grains and is studied with the help of molecular dynamic (MD) simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号