首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
直接甲醇燃料电池催化剂性能的影响因素   总被引:1,自引:0,他引:1  
考察了温度、电位及中间产物等因素对直接甲醇燃料电池催化剂性能的影响.结果表明,温度的升高会显著促进Pt催化剂粒子的聚结.对于PtRu催化剂,Ru氧化物/水合氧化物对Pt微晶的聚结具有抑制作用.高温放电实验后,PtRu催化剂的合金化程度有所提高.高电位会加速电催化剂的降解.电极反应中间产物甲酸和甲醛对甲醇电催化氧化反应具有一定的抑制作用,其中甲醛的影响更大.  相似文献   

2.
The high cost of platinum in catalyst layers hinders the commercialization of proton exchange membrane fuel cells. This Account reviews recent progress on core-shell nanostructures for oxygen reduction reaction (ORR) in acidic media, which is the cathodic reaction in fuel cells. The synthesis, characterization and evaluation of different types of core-shell electrocatalysts are summarized. Various strategies to improve the performance of core-shell electrocatalysts, including dealloying, morphology control, and surface modification are presented. The issues of mass production and fuel cell performance of core-shell electrocatalysts are also discussed.  相似文献   

3.
In this work, PdAu nanocatalysts with different weight ratio of Pd and Au supported on functional multi-walled carbon nanotubes (f-MWCNTs) were prepared, and their electrocatalytic activity for the oxidation of formic acid was also studied. The electrocatalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical results showed that the 4Pd1Au/f-MWCNTs (by weight) catalyst, exhibited distinctly higher activity and better stability in formic acid electrooxidation than the Pd/f-MWCNTs catalyst. The Nano-Au improves potentially the performance of Pd-based electrocatalysts for the direct formic acid fuel cells (DFAFCs).  相似文献   

4.
The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).  相似文献   

5.
Unremitting and intensive researches about efficient non-precious metal electrocatalysts are necessary for large-scale commercial applications of fuel cells, while iron and nitrogen co-doped carbon(Fe-N-C)materials has become one of the most promising electrocatalysts to replace Pt-based noble metal catalysts. However, the traditional Fe-doped ZIF with rhomb dodecahedron morphology limits the exposure of active sites and the utilization of atoms, even affecting the performance of the catalyst. H...  相似文献   

6.
The development of new electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at physiological pH is critical for several fields, including fuel cells and biological applications. Herein, the assembly of an electrode based on carboxyl‐functionalised hydrophilic multiwalled carbon nanotubes (MWCNTs) filled with Fe phases and their excellent performance as electrocatalysts for ORR and HER at physiological pH are reported. The encapsulated Fe dramatically enhances the catalytic activity, and the graphitic shells play a double role of efficiently mediating the electron transfer to O2 and H2O reactants and providing a cocoon that prevents uncontrolled Fe oxidation or leaching.  相似文献   

7.
Electrospun carbon nanofiber-supported bimetallic PtxAu100?x electrocatalysts (PtxAu100?x/CNF) were prepared by electrochemical codeposition method. The composition of PtAu bimetallic nanoparticles could be controlled by varying the ratio of H2PtCl6 and HAuCl4. Scanning electron microscopy images showed that bimetallic nanoparticles had coarse surface morphology with high electrochemically active surface areas. X-ray diffraction analysis testified the formation of PtAu alloys. PtxAu100?x/CNF electrocatalysts exhibited improved electrocatalytic activities towards formic acid oxidation by providing the selectivity of the reaction via dehydrogenation pathway and suppressing the formation/adsorption of poisoning CO intermediate, indicating that PtxAu100?x/CNF is promising electrocatalyst in direct formic acid fuel cells.  相似文献   

8.
燃料电池是具有广泛应用前景的新能源技术。碳载铂基催化剂(Pt/C)是最常用的燃料电池电极催化剂,不过Pt/C稳定性较差、且成本高昂,严重限制了燃料电池的规模化应用。共价型碳化物碳化硅和碳化硼,由于具有极强的共价键,其物化稳定性优异,成为制备高稳定性、低成本的燃料电池催化剂的重要基础材料。本文总结了相关研究成果,介绍了碳化硅和碳化硼的独特优势,讨论了相关研究的发展方向。  相似文献   

9.
燃料电池汽车已被确立为我国的战略性新兴产业,目前正处于大规模商业化的前夜,铂基电催化剂作为质子交换膜燃料电池的核心材料之一,其活性、耐久性和成本制约着这一洁净能源技术的进一步发展。高性能低铂核壳电催化剂被广泛认为有望解决这一瓶颈问题,虽然国内外在这一领域的研究取得了诸多重要的进展,但是仍存在着制备过程复杂、非铂贵金属内核尺寸较大及核壳结构宏观表征困难等问题。本文介绍两种相对简单、易放大的制备方法,即一锅法和液相合成结合区域选择原子层气相沉积法,均获得了性能优良的Pd3Au@Pt/C核壳结构电催化剂,Pd3Au内核尺寸控制在约5 nm,并利用循环伏安测试和甲酸氧化反应从宏观角度研究了铂层在内核表面的覆盖情况,探索了含钯核壳结构电催化剂的新型宏观表征方法。  相似文献   

10.
燃料电池是具有广泛应用前景的新能源技术。碳载铂基催化剂(Pt/C)是最常用的燃料电池电极催化剂,不过Pt/C稳定性较差、且成本高昂,严重限制了燃料电池的规模化应用。共价型碳化物碳化硅和碳化硼,由于具有极强的共价键,其物化稳定性优异,成为制备高稳定性、低成本的燃料电池催化剂的重要基础材料。本文总结了相关研究成果,介绍了碳化硅和碳化硼的独特优势,讨论了相关研究的发展方向。  相似文献   

11.
High-entropy alloys (HEAs) have been attracting extensive research interests in designing advanced nanomaterials, while their precise control is still in the infancy stage. Herein, we have reported a well-defined PtBiPbNiCo hexagonal nanoplates (HEA HPs) as high-performance electrocatalysts. Structure analysis decodes that the HEA HP is constructed with PtBiPb medium-entropy core and PtBiNiCo high-entropy shell. Significantly, the HEA HPs can reach the specific and mass activities of 27.2 mA cm−2 and 7.1 A mgPt−1 for formic acid oxidation reaction (FAOR), being the record catalyst ever achieved in Pt-based catalysts, and can realize the membrane electrode assembly (MEA) power density (321.2 mW cm−2) in fuel cell. Further experimental and theoretical analyses collectively evidence that the hexagonal intermetallic core/atomic layer shell structure and multi-element synergy greatly promote the direct dehydrogenation pathway of formic acid molecule and suppress the formation of CO*.  相似文献   

12.
PdAuIr/C-Sb2O5·SnO2electrocatalysts with Pd∶Au∶Ir molar ratios of 90∶5∶5,70∶20∶10 and 50∶45∶5 were prepared by borohydride reduction method.These electrocatalysts were characterized by EDX,X-ray diffraction,transmission electron microscopy and the catalytic activity toward formic acid electro-oxidation in acid medium investigated by cyclic voltammetry(CV),chroamperometry(CA)and tests on direct formic acid fuel cell(DFAFC)at 100℃.X-ray diffractograms of PdAuIr/C-Sb2O5·SnO2electrocatalysts showed the presence of Pd fcc phase,Pd-Au fcc alloys,carbon and ATO phases,while Ir phases were not observed.TEM micrographs and histograms indicated that the nanoparticles were not well dispersed on the support and some agglomerates.The cyclic voltammetry and chroamperometry studies showed that PdAuIr/C-Sb2O5·SnO2(50∶45∶5)had superior performance toward formic acid electro-oxidation at 25℃compared to PdAuIr/C-Sb2O5·SnO2(70∶20∶10),PdAuIr/C-Sb2O5·SnO2(90∶5∶5)and Pd/C-Sb2O5·SnO2electrocatalysts.The experiments in a single DFAFC also showed that all PdAuIr/C-Sb2O5·SnO2electrocatalysts exhibited higher performance for formic acid oxidation in comparison with Pd/C-Sb2O5·SnO2electrocatalysts,however PdAuIr/C-Sb2O5·SnO2(90∶5∶5)had superior performance.These results indicated that the addition of Au and Ir to Pd favor the electro-oxidation of formic acid,which could be attributed to the bifunctional mechanism(the presence of ATO,Au and Ir oxides species)associated to the electronic effect(Pd-Au fcc alloys).  相似文献   

13.
Exploiting high‐performance and inexpensive electrocatalysts for methanol electro‐oxidation is conductive to promoting the commercial application of direct methanol fuel cells. Here, we present a facile synthesis of echinus‐like PdCu nanocrystals (NCs) via a one‐step and template‐free method. The echinus‐like PdCu NCs possess numerous straight and long branches which can provide abundant catalytic active sites. Owing to the novel nanoarchitecture and electronic effect of the PdCu alloy, the echinus‐like PdCu NCs display high electrocatalytic performance toward methanol oxidation reaction in an alkaline medium. The mass activity of echinus‐like PdCu NCs is 1202.1 mA mgPd?1, which is 3.7 times that of Pd/C catalysts. In addition, the echinus‐like structure, as a kind of three‐dimensional self‐supported nanoarchitecture, endows PdCu NCs with significantly enhanced stability and durability. Hence, the echinus‐like PdCu NCs hold prospect of being employed as electrocatalysts for direct alcohol fuel cells.  相似文献   

14.
Pd and bimetallic PdRu nanoparticles supported on Vulcan XC-72 carbon prepared by the microwave-assisted polyol process are examined as electrocatalysts for the electrooxidation of formic acid. The catalysts are characterized by transmission electron microscopy and X-ray diffraction. The Pd and PdRu nanoparticles with sizes of <10 nm display the characteristic diffraction peaks of a Pd face-centered cubic (fcc) crystal structure. It is found that the addition of Ru to Pd/C can decrease the lattice parameter of Pd (fcc) crystal. The electrocatalytic activities of the catalysts are evaluated in sulfuric acid solution containing 1 M formic acid using linear sweeping voltammetry and chronoamperometry. The results show that Pd5Ru1/C displays the best electrocatalytic performance among all catalysts for formic acid electrooxidation.  相似文献   

15.
The development of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR) is critical for the large-scale production of fuel cells. Platinum (Pt) nanoparticle catalysts show excellent performance for ORR, though the high cost of Pt is a limiting factor that directly impacts fuel cell production costs. Alloying Pt with other transition metals is an effective strategy to reduce Pt utilization whilst maintaining good ORR performance. In this work, novel hollow PtFe alloy catalysts were successfully synthesized by high-temperature pyrolysis of SiO2-coated Pt-Fe3O4 nanoparticle dimers supported on carbon at 900 °C, followed by SiO2 shell removal and partial dealloying of the PtFe nanoparticles formed using HF. The obtained hollow PtFe nanoparticle catalysts (denoted herein as PtFe-900) showed a 2.3-fold enhancement in ORR mass activity compared to PtFe nanoparticles synthesized without SiO2 protection, and a remarkable 7.8-fold enhancement relative to a commercial Pt/C catalyst. Further, after 10 000 potential cycles, the ORR mass activity of PtFe-900 remained very high (90.9 % of the initial mass activity). The outstanding ORR performance of PtFe-900 can be attributed to the modification of Pt lattice and electronic structure by alloying with Fe at high temperature under the protection of the SiO2 coating. This work guides the development of improved, highly dispersed Pt-based alloy nanoparticle catalysts for ORR and fuel cell applications.  相似文献   

16.
Recent years have witnessed a dramatic increase in the production of sustainable and renewable energy. However, the electrochemical performances of the various systems are limited, and there is an intensive search for highly efficient electrocatalysts by more rational control over the size, shape, composition, and structure. Of particular interest are the studies on single‐atom catalysts (SACs), which have sparked new interests in electrocatalysis because of their high catalytic activity, stability, selectivity, and 100 % atom utilization. In this Review, we introduce innovative syntheses and characterization techniques for SACs, with a focus on their electrochemical applications in the oxygen reduction/evolution reaction, hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells (electrooxidation of methanol, ethanol, and formic acid). The electrocatalytic performance is further considered at an atomic level and the underlying mechanisms are discussed. The ultimate goal is the tailoring of single atoms for electrochemical applications.  相似文献   

17.
Developing superior electrocatalysts for formic acid oxidation (FAO) is the most crucial step in commercializing direct formic acid fuel cells. Herein, we electrodeposited palladium membranes with periodically ordered mesoporosity obtained by asymmetrically replicating the bicontinuous cubic phase structure of a lyotropic liquid‐crystal template. The Pd membrane with the largest periodicity and highest degree of order delivered up to 90.5 m2 g?1 of electrochemical active surface area and 3.34 A mg?1 electrocatalysis capability towards FAO, 3.8 and 7.8 times the values of the commercial Pd/C catalyst, respectively. By controlling the temperature and potential of the electrodeposition procedure, the periodicity area and order degree of the mesoporosity are highly tunable. These Pd membranes gave prototype formic acid fueled cells with 4.3 and 2.4 times the maximum current and power density of the commercial Pd/C catalyst.  相似文献   

18.
The anodic reaction in direct ethanol fuel cells (DEFCs), ethanol oxidation reaction (EOR) faces challenges, such as incomplete electrooxidation of ethanol and high cost of the most efficient electrocatalyst, Pt in acidic media at low temperature. In this study, core‐shell electrocatalysts with an Au core and Pt‐based shell (Au@Pt) are developed. The Au core size and Pt shell thickness play an important role in the EOR activity. The Au size of 2.8 nm and one layer of Pt provide the most optimized performance, having 6 times higher peak current density in contrast to commercial Pt/C. SnO2 as a support also enhances the EOR activity of Au@Pt by 1.73 times. Further modifying the Pt shell with Ru atoms achieve the highest EOR current density that is 15 and 2.5 times of Pt/C and Au@Pt. Our results suggest the importance of surface modification in rational design of advanced electrocatalysts.  相似文献   

19.
Hydroxide‐exchange membrane fuel cells can potentially utilize platinum‐group‐metal (PGM)‐free electrocatalysts, offering cost and scalability advantages over more developed proton‐exchange membrane fuel cells. However, there is a lack of non‐precious electrocatalysts that are active and stable for the hydrogen oxidation reaction (HOR) relevant to hydroxide‐exchange membrane fuel cells. Here we report the discovery and development of Ni3N as an active and robust HOR catalyst in alkaline medium. A supported version of the catalyst, Ni3N/C, exhibits by far the highest mass activity and break‐down potential for a PGM‐free catalyst. The catalyst also exhibits Pt‐like activity for hydrogen evolution reaction (HER) in alkaline medium. Spectroscopy data reveal a downshift of the Ni d band going from Ni to Ni3N and interfacial charge transfer from Ni3N to the carbon support. These properties weaken the binding energy of hydrogen and oxygen species, resulting in remarkable HOR activity and stability.  相似文献   

20.
The research of active and stable electrocatalysts toward liquid‐fuel oxidation reaction is of great significance for the large‐scale commercialization of fuel cells. Although extensive efforts have been devoted to pursuing high‐performance nanocatalysts for fuel cells, both the high cost and sluggish reaction kinetics have been two major drawbacks that limited its commercial development. In this regard, we demonstrated a facile solvothermal method for the syntheses of an advanced class of PtCu nanocatalysts with a unique pentangle‐like shape. By combining the merits of a highly active surface area as well as the synergistic and electronic effects, the as‐prepared pentangle‐like Pt3Cu nanocatalysts showed superior electrocatalytic activity towards ethylene glycol oxidation with a mass and specific activities of 5162.6 mA mg?1 and 9.7 mA cm?2, approximately 5.0 and 5.1 times higher than the commercial Pt/C, respectively. More significantly, the Pt3Cu pentangle also showed excellent long‐term stability with less activity decay and negligible changes in structure after 500 cycles, indicating another class of anode catalysts for fuel cells and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号