首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.  相似文献   

2.
采用基于液相色谱-质谱联用的方法对慢性心力衰竭(Chronic heart failure, CHF)患者和正常对照(Control)人群的尿液进行分析, 筛选慢性心力衰竭患者尿液中的差异代谢物, 研究其发病机制, 并为临床治疗提供科学依据.选择15个慢性心力衰竭患者(年龄(62.27±3.14)岁)及15个正常人(年龄(65.41±4.63)岁), 采用高分辨度快速液相色谱-四极杆-飞行时间串联质谱(RRLC-QTOF/MS)技术对尿液代谢物进行分析, 采用主成分分析(PCA)对两组代谢物进行分类, 并筛选潜在生物标记物;运用偏最小二乘判别分析法(PLS-DA)建模, 考察生物标记物对疾病筛选的预测能力.研究结果表明, CHF组和Control组尿液代谢物谱能得到很好的区分, 发现并鉴定了2种潜在生物标记物尿苷及丙氨酰色氨酸, 提示嘧啶代谢和色氨酸代谢可能在心力衰竭发生发展中有重要作用.  相似文献   

3.
Breath analysis using eNose technology can be used to discriminate between asthma and COPD patients, but it remains unclear whether results are influenced by smoking status. We aim to study whether eNose can discriminate between ever- vs. never-smokers and smoking <24 vs. >24 h before the exhaled breath, and if smoking can be considered a confounder that influences eNose results. We performed a cross-sectional analysis in adults with asthma or chronic obstructive pulmonary disease (COPD), and healthy controls. Ever-smokers were defined as patients with current or past smoking habits. eNose measurements were performed by using the SpiroNose. The principal component (PC) described the eNose signals, and linear discriminant analysis determined if PCs classified ever-smokers vs. never-smokers and smoking <24 vs. >24 h. The area under the receiver–operator characteristic curve (AUC) assessed the accuracy of the models. We selected 593 ever-smokers (167 smoked <24 h before measurement) and 303 never-smokers and measured the exhaled breath profiles of discriminated ever- and never-smokers (AUC: 0.74; 95% CI: 0.66–0.81), and no cigarette consumption <24h (AUC 0.54, 95% CI: 0.43–0.65). In healthy controls, the eNose did not discriminate between ever or never-smokers (AUC 0.54; 95% CI: 0.49–0.60) and recent cigarette consumption (AUC 0.60; 95% CI: 0.50–0.69). The eNose could distinguish between ever and never-smokers in asthma and COPD patients, but not recent smokers. Recent smoking is not a confounding factor of eNose breath profiles.  相似文献   

4.
Olive oil polyphenols have important biological properties which closely depend on their bioavailability; it is, therefore, essential to understand how polyphenols are absorbed, metabolized, and eliminated from the body. An analytical method based on rapid-resolution liquid chromatography (RRLC) coupled with mass spectrometric detection with a time-of-flight analyzer (RRLC–ESI-TOF MS) has been developed for analysis of the main olive oil phenolic compounds and their metabolites in human urine. Urine samples from ten healthy volunteers were collected before and 2, 4, and 6 h after intake of 50 mL extra-virgin olive oil. The proposed method includes liquid–liquid extraction with ethyl acetate, which provides extraction recoveries of the phenolic compounds studied between 35 and 75% from spiked urine samples. Good repeatability was obtained—the relative standard deviations (RSDs) of peak areas in intra-day and inter-day studies were 4.3 and 6.5%, respectively. Statistical studies enabled us to discriminate between urine samples before and after intake, and facilitated the search for m/z values enabling this discrimination. Based on the very accurate mass information and the isotopic pattern provided by the TOF MS analyzer, together with other available information, ten of these biomarkers and more than 50 metabolites, obtained through phase I and phase II biotransformation reactions, were tentatively identified. Additionally, kinetic studies were conducted on the metabolites identified as possible biomarkers; for most of the compounds concentrations were maximum in the first two hours.  相似文献   

5.
利用液相色谱-质谱联用法对小儿肺炎( Childhood pneumonia, CP)患者和健康儿童( Healthy control)的尿液进行分析,发现小儿肺炎患者尿液中的潜在标记物,为其发病机制及早期筛查提供科学依据。筛选10例小儿肺炎患者(age 47.72±2.35 months)及10例健康儿童(age 46.65±1.97 months)尿液样本,采用快速高分辨液相色谱四极杆-飞行时间质谱联用( RRLC-Q TOF/MS)技术对其尿液代谢物进行分析,通过主成分分析方法( PCA)对两组代谢物进行分类,并发现潜在生物标记物。 RRLC-Q TOF/MS检测表明,CP组和Healthy Control组尿液代谢物图谱能得到很好的区分,并鉴定了5种生物标记物,提示嘌呤代谢、氨基酸代谢可能在小儿肺炎发生发展中有重要作用。  相似文献   

6.
In this study, urinary metabolic profiles of patients with heart failure (HF) and healthy individuals were analyzed by LC-TOF–MS. Both reversed-phase chromatography and hydrophilic interaction chromatography were used to separate the endogenous metabolites in urine. Partial least-squares to latent structure-discriminant analysis was used for discriminating HF patients from healthy persons and the selection of potential biomarkers. The results suggested that the combination of LC–MS and multivariate statistical analysis could be used for HF diagnosis. The MS/MS experiments were carried out to identify the potential biomarkers which are important for the contribution to the discrimination. As a result, 12 potential biomarkers for HF were identified and the related metabolic pathways were studied.  相似文献   

7.
This paper presents a simple and reliable gas chromatography/mass spectrometry (GC/MS) method for the metabonomic analysis of human urine samples. The sample preparation involved the depletion of excess urea via treatment with urease and subsequent protein precipitation using ice-cold ethanol. An aliquot of the mixture was separated, dried, trimethylsilyl (TMS)-derivatized and 1.0 microL of the derivatized extract was injected into the GC/MS system via split injection (1:10). Approximately 150 putative metabolites belonging to different chemical classes were identified from the pooled human urine samples. All the identified metabolites were selected to evaluate precision and stability of the GC/MS assay. More than 95% of the metabolites demonstrated good reproducibility, with intra-day and inter-day precision values below 15%. Metabolic profiling of 53 healthy male and female urine samples in combination with pattern recognition techniques was performed to further validate the GC/MS metabolite profiling assay. Principal component analysis (PCA) followed by orthogonal partial least squares analysis (OPLS) revealed differences between urinary metabolite profiles of healthy male and female subjects. This validated GC/MS metabolic profiling method may be further applied to the metabonomic screening of urinary biomarkers in clinical studies. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Volatile organic compounds (VOCs) exiting in urine are potential biomarkers of chronic kidney diseases. Headspace solid phase microextraction (HS-SPME) was applied for extraction VOCs over the urine samples. Volatile metabolites were separated and identified by means of two-dimensional gas chromatography and time of flight mass spectrometry (GC × GC TOF MS). Patients with glomerular diseases (n = 27) and healthy controls (n = 20) were recruited in the study. Different VOCs profiles were obtained from patients and control. Developed methodology offers the opportunity to examine the metabolic profile associated with glomerulopathy. Four compounds found in elevated amounts in the patients group, i.e., methyl hexadecanoate; 9-hexadecen-1-ol; 6,10-dimethyl-5,9-undecadien-2-one and 2-pentanone were proposed as markers of glomerular diseases.  相似文献   

9.
Parkinson’s disease(PD) is a complex neurological disorder that typically worsens with age. A wide range of pathologies makes PD a very heterogeneous condition, and there are currently no reliable diagnostic tests for this disease. The application of metabolomics to the study of PD has the potential to identify disease biomarkers through the systematic evaluation of metabolites. In this study, urine metabolic profiles of 215 urine samples from 104 PD patients and 111 healthy individuals were ass...  相似文献   

10.
应用代谢组学研究方法,对与膀胱癌(Bladder cancer,BC)发病相关的生物标志物进行筛选,采用液相色谱-电喷雾质谱(LC-ESI/MS)联用技术对20名膀胱癌患者与24名正常人的血清和尿液进行研究.多变量统计分析结果表明,膀胱癌患者和正常人聚类明显,血清和尿液中分别发现13个潜在标志物.其中,(2E,6E,8E)-二十二碳三烯-1-醇、7-((1S,2S)-2-(庚胺)环己基)庚酸和(11E,14E,17E)-三烯-二十碳-1-醇首次在血清中发现,有潜力成为膀胱癌诊断标志物.液相色谱-质谱联用结合多变量分析的代谢组学研究技术在膀胱癌诊断中展现出巨大潜力.  相似文献   

11.
Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous organ and system manifestations. In this study, urinary metabolic alterations related to SLE were investigated by performing gas chromatography/mass spectrometry (GC/MS) based metabolomics and multivariate statistical analysis. Patients with SLE and healthy controls could be clearly differentiated in view of the metabolic abnormity in urine. Among 70 identified endogenous metabolites, 23 metabolites were dramatically increased in SLE patients, which involved in several key metabolic pathways including energy metabolism, nucleotide metabolism, oxidative stress and gut‐microbiome‐derived metabolism. This noninvasive and GC/MS‐based metabolomic technique is a promising and potent strategy for identifying novel biomarkers and understanding pathogenesis of SLE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Physalin D is known to show extensive bioactivities. However, no excretion study has elucidated the excretion of physalin D and its metabolites. This study investigates the excretion of physalin D and its metabolites in rats. Metabolites in rat urine and feces were separated and identified by liquid chromatography with triple quadrupole time‐of‐flight mass spectrometry. Furthermore, a validated high‐performance liquid chromatography with tandem mass spectrometry method was developed to quantify physalin D, physalin D glucuronide, and physalin D sulfate in rat feces and urine after the intragastric administration of physalin D. The analyte showed good linearity over a wide concentration range (r  > 0.995), and the lower limit of quantification was 0.0532 μg/mL and 0.226 μg/g for urine and feces, respectively. Nine metabolites, including five phase I and four phase II metabolites, were identified and clarified after dosing in vivo. Only 4.0% of the gavaged dose, including physalin D and its phase II metabolites, was excreted in urine, whereas 10.8% was found in feces in the unchanged form. The results indicate that the extensive and rapid metabolism may be the main factors leading to the short half‐life of physalin D. These results can provide a basis for further studies on the structural modification and pharmacology of physalin D.  相似文献   

13.
14.
Controversial results have been reported in the literature regarding the behavior of two testosterone (T) metabolites (3α-glucuronide-6β-hydroxyandrosterone and 3α-glucuronide-6β-hydroxyetiocholanolone) excreted after T administration. Due to their potential as biomarkers of T misuse, a UHPLC–MS/MS method for the direct quantification of these glucuronides was developed and validated. In addition, the main phase II metabolites of T that compose the steroid profile used for doping control purposes (glucuronides of T, epitestosterone, androsterone and etiocholanolone) were included. The method was found to be linear and with suitable LODs and LOQs for all metabolites. The average accuracies were between 86% and 120%, the RSDs for the intra- and inter-day precision were below 15% and 25% respectively. The method showed low matrix effect. Samples obtained before and after the administration of T were analyzed by both the developed UHPLC–MS/MS method and the GC–MS/MS method currently used by anti-doping laboratories. Relevant disagreements between the results obtained for 3α-glucuronide-6β-hydroxyandrosterone and 3α-glucuronide-6β-hydroxyetiocholanolone quantitation were observed. These markers seemed to be more suitable for the screening of T misuse when detected by UHPLC–MS/MS. These discrepancies were further investigated in 50 urine samples from healthy volunteers. The two methods gave highly correlated results for all metabolites that are currently included in the athlete's steroid profile confirming the reliability of the UHPLC–MS/MS method. However, the quantification of 3α-glucuronide-6β-hydroxyandrosterone and 3α-glucuronide-6β-hydroxyetiocholanolone, was only possible by using the UHPLC–MS/MS method since three interfering compounds were observed when performing the GC–MS/MS analysis with the most intense ion transitions. These results confirm the potential of the resistant glucuronides as biomarkers of T misuse. Additionally, they suggest that previously reported reference ranges for these metabolites should be reevaluated.  相似文献   

15.
An ultra fast liquid chromatography coupled with IT-TOF mass spectrometry (UFLC/MS-IT-TOF) metabonomic approach was employed to study the plasma and urine metabolic profiling of atherosclerosis rats. Acquired data were subjected to principal component analysis (PCA) for differentiating the atherosclerosis and the control groups. Potential biomarkers were screened by using S-plot and were identified by the accurate mass and MSn fragments information obtained from UFLC/MS-IT-TOF analysis. 12 metabolites in rat plasma and 8 metabolites in urine were identified as potential biomarkers. Concentrations of leucine, phenylalanine, tryptophan, acetylcarnitine, butyrylcarnitine, propionylcarnitine and spermine in plasma and 3-O-methyl-dopa, ethyl N2-acetyl-l-argininate, leucylproline, glucuronate, t6A N(6)-(N-threonylcarbonyl)-adenosine and methyl-hippuric acid in urine decreased in atherosclerosis rats. Ursodeoxycholic acid, chenodeoxycholic acid, LPC (C16:0), LPC (C18:0) and LPC (C18:1) in plasma and hippuric acid in urine were in higher levels in atherosclerosis rats. The alterated metabolites demonstrated abnormal metabolism of phenylalanine, tryptophan, bile acids and amino acids. This research proved that metabonomics is a promising tool for disease research.  相似文献   

16.
Metabolomics has been shown to be an effective tool for disease diagnosis, biomarker screening and characterization of biological pathways. A total of 140 subjects were included in this study; urine metabolomes of patients with liver cirrhosis (LC, n = 40), patients with hepatocellular carcinoma (HCC; n = 55) and healthy male subjects (n = 45) as a control group were studied. Gas chromatography/mass spectrometry‐based urine metabolomics profiles were investigated for all participants. Diagnostic models were constructed with a combination of marker metabolites, using principal components analysis and receiver operator characteristic curves. A total of 57 peaks could be auto‐identified of which 13 marker metabolites (glycine, serine, threonine, proline, urea, phosphate, pyrimidine, arabinose, xylitol, hippuric acid, citric acid, xylonic acid and glycerol) were responsible for the separation of HCC group from healthy subjects. Also, eight markers metabolites (glycine, serine, threonine, proline, citric acid, urea, xylitol and arabinose) showed significant differences between the LC group and healthy subjects. No significant difference was detected between HCC and LC groups regarding all these metabolites. Metabolomic profile using GC–MS established an optimized diagnostic model to discriminate between HCC patients and healthy subjects; also it could be useful for diagnosis of LC patients. However, it failed to differentiate between HCC and LC patients.  相似文献   

17.
In this study, we focused on studying the changes in urine metabolites in hyperlipidemic rats using ultra-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC–Q-TOF/MS) and metabolomics, as well as the effect of Citri Reticulatae Chachiensis Pericarpium (CRCP) on hyperlipidemia. These urine samples were examined by UPLC–Q-TOF/MS to obtain MS data. The MS data were analyzed by principal component analysis and partial least squares-discriminant analysis to identify the differential metabolites. CRCP reduced the body weight and levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol and abnormally decreased high-density lipoprotein cholesterol in hyperlipidemic rats, which were significantly raised by a high-fat diet. Twenty-seven potential biomarkers were identified within the complex sample matrix of urine. Fourteen biomarkers increased in the hyperlipidemia rats compared with normal rats. Meanwhile, 13 biomarkers decreased. CRCP reversed abnormal changes in biomarkers, including 5-l -glutamyl-taurine, 5-aminopentanoic acid, cis-4-octenedioic acid and 2-octenedioic acid. These biomarkers show that hyperlipidemia is related to the metabolic pathways of taurine and hypotaurine metabolism, fatty acid biosynthesis , and arginine and proline metabolism . CRCP mainly prevents hyperlipidemia by intervening in these metabolic pathways.  相似文献   

18.
A missed abortion (MA) is an in utero death of the embryo or fetus before the 20th week of gestation with retained products of conception, and this condition is currently common in China. In order to discover novel biomarkers for MA, ultrahigh performance liquid chromatography was applied to study plasma metabolite profiles for 33 patients with MA and 29 control subjects. Thirty‐seven differential plasma metabolites were found to discriminate between the two groups in the initial cohort (15 subjects with MA and 15 healthy controls). The feasibility of using these potential biomarkers to predict MA was further evaluated in the validation cohort (18 subjects with MA and 14 healthy controls) and 15 had an area under the receiver operating characteristic curve of >0.80, making them satisfactory. Tryptophan metabolism and sphingolipid metabolism were identified as important potential target pathways for MA using metabolic pathway impact analysis. Furthermore, three of the 15 satisfactory metabolites (glyceric acid, indole and sphingosine) were combined to establish a predictive model with 100% sensitivity and 100% specificity in the validation cohort. Taken together, these results suggest that MA results in significant disturbance of metabolism and those various novel biomarkers have satisfactory diagnostic and predictive power for MA.  相似文献   

19.
Desorption electrospray ionization mass spectrometry (DESI-MS) and nuclear magnetic resonance (NMR) spectroscopy are used to provide data on urine examined without sample preparation to allow differentiation between diseased (lung cancer) and healthy mice. Principal component analysis (PCA) is used to shortlist compounds with potential for biomarker screening which are responsible for significant differences between control urine samples and samples from diseased animals. Similar PCA score plots have been achieved by DESI-MS and NMR, using a subset of common detected metabolites. The common compounds detected by DESI and NMR have the same changes in sign of their concentrations thereby indicating the usefulness of corroborative analytical methods. The effects of different solvents and surfaces on the DESI mass spectra are also evaluated and optimized. Over 80 different metabolites were successfully identified by DESI-MS and tandem mass spectrometry experiments, with no prior sample preparation.  相似文献   

20.
A Zhang  H Sun  Y Han  Y Yuan  P Wang  G Song  X Yuan  M Zhang  N Xie  X Wang 《The Analyst》2012,137(18):4200-4208
Metabolomics represents an emerging and powerful discipline concerned with the comprehensive analysis of small molecules and provides a powerful approach to discover biomarkers in biological systems. Recent development of biomarkers for diagnosis and therapeutic monitoring of liver-stagnation and spleen-deficiency syndrome (LSS)-type disease remains challenging. This study was undertaken to discover novel potential biomarkers for the non-invasive early diagnosis of human LSS. Urine samples which are potentially a rich source of metabolites were collected from patients with LSS, together with healthy control samples. Metabolite profiling was performed by ultra-performance liquid-chromatography/electrospray-ionization synapt high-definition mass spectrometry (UPLC-Q-TOF-HDMS) in conjunction with multivariate data analysis and ingenuity pathway analysis that were used to select the metabolites to be used for the non-invasive diagnosis of LSS. Twelve urinary differential metabolites contributing to the complete separation of LSS patients from matched healthy controls were identified involving several key metabolic pathways such as pentose and glucuronate interconversions, ascorbate, aldarate, cysteine, methionine, tyrosine, tryptophan, amino sugar and nucleotide sugar metabolism. More importantly, of the 12 differential metabolites, 4 metabolite markers, prolylhydroxyproline, l-homocystine, 2-octenoylcarnitine and α-N-phenylacetyl-l-glutamine, were effective for the diagnosis of human LSS, with an achieved sensitivity of 93.0%. These results demonstrate that robust metabolomics has the potential as a non-invasive strategy and promising screening tool to evaluate the potential of these metabolites in the early diagnosis of LSS patients and provides new insight into pathophysiological mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号