首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new NIR‐absorbing BODIPY dyes, each bearing two pyridinium groups, are synthesized and their DNA‐binding affinities and DNA photocleavage abilities examined in depth. While one BODIPY dye photocleaves DNA mainly through singlet oxygen, the other photocleaves DNA through both singlet oxygen and hydroxyl radical. To the best of our knowledge, this is the first example of a hydroxyl radical being involved in the photodynamic behavior of BODIPY‐type dyes. EPR experiments confirm the ability of these and several related BODIPYs to generate superoxide anion radical and hydroxyl radical. This finding may shed light on the mechanism of BODIPY‐based photodynamic therapy (PDT) and open a new avenue for development of more efficient BODIPY‐type PDT agents.  相似文献   

2.
《化学:亚洲杂志》2017,12(18):2447-2456
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso ‐aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady‐state and time‐resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron‐donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl‐BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors.  相似文献   

3.
This minireview is devoted to honoring the memory of Dr. Thomas Dougherty, a pioneer of modern photodynamic therapy (PDT). It compiles the most important inputs made by our research group since 2012 in the development of new photosensitizers based on BODIPY chromophore which, thanks to the rich BODIPY chemistry, allows a finely tuned design of the photophysical properties of this family of dyes to serve as efficient photosensitizers for the generation of singlet oxygen. These two factors, photophysical tuning and workable chemistry, have turned BODIPY chromophore as one of the most promising dyes for the development of improved photosensitizers for PDT. In this line, this minireview is mainly related to the establishment of chemical methods and structural designs for enabling efficient singlet oxygen generation in BODIPYs. The approaches include the incorporation of heavy atoms, such as halogens (iodine or bromine) in different number and positions on the BODIPY scaffold, and also transition metal atoms, by their complexation with Ir(III) center, for instance. On the other hand, low-toxicity approaches, without involving heavy metals, have been developed by preparing several orthogonal BODIPY dimers with different substitution patterns. The advantages and drawbacks of all these diverse molecular designs based on BODIPY structural framework are described.  相似文献   

4.
Novel BODIPY photosensitizers were developed for imaging-guided photodynamic therapy. The introduction of a strong electron donor to the BODIPY core through a phenyl linker combined with the twisted arrangement between the donor and the BODIPY acceptor is essential for reducing the energy gap between the lowest singlet excited state and the lowest triplet state (ΔEST), leading to a significant enhancement in the intersystem crossing (ISC) of the BODIPYs. Remarkably, the BDP-5 with the smallest ΔEST (ca. 0.44 eV) exhibited excellent singlet oxygen generation capabilities in both organic and aqueous solutions. BDP-5 also displayed bright emission in the far-red/near-infrared region in the condensed states. More importantly, both in vitro and in vivo studies demonstrated that BDP-5 NPs displayed a high potential for photodynamic cancer therapy and bioimaging.  相似文献   

5.
The spectral–luminescent, photophysical, and photochemical properties of dichloro-, dibromo-, and diiodo-derivatives of boron dipyrromethenate (BODIPY) have been studied, as well as the feasibility of generating singlet oxygen (1O2) via its photosensitization by the dihalogenated derivatives of BF2 dipyrromethene in solutions. Quantum yields of singlet oxygen have been determined using 1,3-diphenylisobenzofuran as the 1O2 trap. The lowest fluorescence quantum yields have been shown to correspond to the maximum yields of singlet oxygen. It has been found that the best 1O2 photosensitizer among the three test dihalotetraphenylaza- BODIPY is dibromotetraphenylaza-BODIPY, which in addition possesses the highest photostability. Diiodotetramethyl-BODIPY results in the singlet oxygen yield close to unity, but it has significantly lower photostability. The yield of singlet oxygen is affected by the solvent. Dibromtetraphenylaza-BODIPY and diiodotetramethyl-BODIPY may find use as a medium in photodynamic therapy and photocatalysis of oxidation reactions.  相似文献   

6.
Novel BODIPY photosensitizers were developed for imaging‐guided photodynamic therapy. The introduction of a strong electron donor to the BODIPY core through a phenyl linker combined with the twisted arrangement between the donor and the BODIPY acceptor is essential for reducing the energy gap between the lowest singlet excited state and the lowest triplet state (ΔEST), leading to a significant enhancement in the intersystem crossing (ISC) of the BODIPYs. Remarkably, the BDP‐5 with the smallest ΔEST (ca. 0.44 eV) exhibited excellent singlet oxygen generation capabilities in both organic and aqueous solutions. BDP‐5 also displayed bright emission in the far‐red/near‐infrared region in the condensed states. More importantly, both in vitro and in vivo studies demonstrated that BDP‐5 NPs displayed a high potential for photodynamic cancer therapy and bioimaging.  相似文献   

7.
Enhanced spatiotemporal selectivity in photonic sensitization of dissolved molecular oxygen is an important target for improving the potential and the practical applications of photodynamic therapy. Considering the high intracellular glutathione concentrations within cancer cells, a series of BODIPY‐based sensitizers that can generate cytotoxic singlet oxygen only after glutathione‐mediated cleavage of the electron‐sink module were designed and synthesized. Cell culture studies not only validate our design, but also suggest an additional role for the relatively hydrophobic quencher module in the internalization of the photosensitizer.  相似文献   

8.
Awuah SG  Polreis J  Biradar V  You Y 《Organic letters》2011,13(15):3884-3887
Five novel near-infrared BODIPY dyes were prepared for improved singlet oxygen generation using thiophene and bromine. Theoretical, optical, photostable, and singlet oxygen generation characteristics of these dyes were assessed. Predicted excitation energies by TDDFT calculations were in good agreement (ΔE ≈ 0.06 eV) with experimental data. All five dyes showed both excitation and emission in the NIR range. In particular, two dyes having sulfur and bromine atoms showed efficient singlet oxygen generation with high photostability.  相似文献   

9.
The photosensitized generation of reactive oxygen species, and particularly of singlet oxygen [O2(a1Δg)], is the essence of photodynamic action exploited in photodynamic therapy. The ability to switch singlet oxygen generation on/off would be highly valuable, especially when it is linked to a cancer‐related cellular parameter. Building on recent findings related to intersystem crossing efficiency, we designed a dimeric BODIPY dye with reduced symmetry, which is ineffective as a photosensitizer unless it is activated by a reaction with intracellular glutathione (GSH). The reaction alters the properties of both the ground and excited states, consequently enabling the efficient generation of singlet oxygen. Remarkably, the designed photosensitizer can discriminate between different concentrations of GSH in normal and cancer cells and thus remains inefficient as a photosensitizer inside a normal cell while being transformed into a lethal singlet oxygen source in cancer cells. This is the first demonstration of such a difference in the intracellular activity of a photosensitizer.  相似文献   

10.
We studied the photobleaching of a library of boron dipyrromethene (BODIPY) derivatives with a range of electron densities, and found that the photobleaching rate is influenced by the electron-withdrawing capacity of the substituents. Electron-deficient BODIPYs generated less singlet oxygen, were less reactive to singlet oxygen, and were highly resistant to photobleaching. We confirmed the utility of one of these fluorophores, 2,6-diCO(2)R-BDP, for visualizing EGF receptor dynamics in cells expressing an SNAP-tagged EGF receptor.  相似文献   

11.
利用含碘硅烷前体制备包裹BODIPY染料分子的纳米二氧化硅颗粒.颗粒中的碘原子通过重原子效应有效提高了BODIPY染料分子的系间窜越效率,进而提高了染料分子的单重态氧量子产率及光损伤DNA的能力.这一结果表明,含碘二氧化硅纳米颗粒可以成为众多荧光染料分子在光动力疗法领域应用的一个有效药物负载和输送体系.  相似文献   

12.
A theoretical and experimental study on the iodination of BODIPY dyes with different degrees of substitution has been developed. Polyhalogenated BODIPYs synthesized in this work are the first examples of this type of dyes with more than two halogen atoms in the BODIPY core and they can be selectively functionalized. Surprisingly, the position in which halogen is attached has a marked effect in the photophysical properties and modulates the fluorescence capacity of the resulting BODIPY. These iodinated BODIPYs are efficient singlet oxygen generators.  相似文献   

13.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   

14.
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2˙ under light irradiation.

Cyclic BODIPY trimers showed strong exciton coupling in singlet excited states and long-lived triplet excited states, and generated both singlet oxygen and superoxide radicals under light irradiation, giving good reactive oxygen quantum yields and promising PDT results in vitro.  相似文献   

15.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

16.
Three new 2-component unsubstituted ( 4P ), diiodo- ( 5P ), and dibromo- ( 6P ) distyryl-BODIPY-bridged cyclotriphosphazene dimers were designed and synthesized. The newly synthesized BODIPY-cyclotriphosphazene systems were characterized by 1 H, 13 C, and 31 P NMR spectroscopy. The photophysical properties of the distryl-BODIPYs (4–6) and BODIPY-cyclotriphosphazene dyads ( 4P – 6P ) were studied by UV-Vis absorption and fluorescence emission spectroscopy. In these derivatives, the bino-type cyclotriphosphazene derivative bearing unsubstituted BODIPY unit 4P exhibited high fluorescence and no singlet oxygen generation due to the lack of spin converter. The attachment of heavy atoms (iodine and bromine) enabled the production of singlet oxygen. The bino-type BODIPY-cyclotriphosphazenes ( 5P and 6P ) were also used as triplet photosensitizers in the photooxidation of 1,3-diphenylisobenzofuran to endoperoxide via generation of the singlet oxygen in dichloromethane. The singlet oxygen production of these compounds was also investigated via a direct method and produced a singlet oxygen phosphorescence peak at 1270 nm.  相似文献   

17.
Photosensitizers are reagents that produce reactive oxygen species upon light illumination and are commonly used to study oxidative stress or for photodynamic therapy. There are many available photosensitizers, but most have limitations, such as low photostability, structural instability, or a limited usable range of solvent conditions. Here, we describe a novel photosensitizer scaffold (2I-BDP) based on the unique characteristics of the BODIPY chromophore (i.e., high extinction coefficient, high photostability, and insensitivity to solvent environment). 2I-BDP shows stronger near-infrared singlet oxygen luminescence emission and higher photostability than the well-known photosensitizer, Rose Bengal. Unlike other photosensitizers, this scaffold is widely applicable under various conditions, including lipophilic and aqueous environments. HeLa cells loaded with 2I-BDP could be photosensitized by light illumination, demonstrating that 2I-BDP is potentially useful as a reagent for cell photosensitization, oxidative stress studies, or PDT.  相似文献   

18.
All‐BODIPY‐based (BODIPY=boron‐dipyrromethene) donor–acceptor systems capable of wide‐band absorbance leading to efficient energy transfer in the near‐IR region are reported. A covalently linked 3‐pyrrolyl BODIPY–BODIPY dimer building block bearing an ethynyl group at the meso‐aryl position is synthesized and coupled with three different monomeric BODIPY/pyrrolyl BODIPY building blocks with a bromo/iodo group under Pd0 coupling conditions to obtain three covalently linked 3‐pyrrolyl‐BODIPY‐based donor–acceptor oligomers in 19–29 % yield. The oligomers are characterized in detail by 1D and 2D NMR spectroscopy, high‐resolution mass spectrometry, and optical spectroscopy. Due to the presence of different functionalized BODIPY derivatives in the oligomers, panchromatic light capture (300–725 nm) is witnessed. Fluorescence studies reveal singlet–singlet energy transfer from BODIPY monomer to BODIPY dimer leading to emission in the 700–800 nm range. Theoretical modeling according to the Förster mechanism predicts ultrafast energy transfer due to good spectral overlap of the donor and acceptor entities. Femtosecond transient absorption studies confirm this to be the case and thus show the relevance of the currently developed all‐BODIPY‐based energy‐funneling supramolecular sytems with near‐IR emission to solar‐energy harvesting applications.  相似文献   

19.
20.
Fluorogenic analogues of α‐tocopherol developed by our group have been instrumental in monitoring reactive oxygen species (ROS) within lipid membranes. Prepared as two‐segment trap‐reporter (chromanol‐BODIPY) probes, photoinduced electron transfer (PeT) was utilized to provide these probes with an off/on switch mechanism warranting the necessary sensitivity. Herein, we rationalize within the context of Marcus theory of electron transfer how substituents on the BODIPY core and linker length joining the trap and reporter segments, tune PeT efficiency. DFT and electrochemical studies were used to estimate the thermodynamic driving force of PeT in our constructs. By tuning the redox potential over a 400 mV range, we observed over an order of magnitude increase in PeT efficiency. Increasing the linker length between the chromanol and BODIPY by 2.8 angstroms, in turn, decreased PeT efficiency 2.7‐fold. Our results illustrate how substituent and linker choice enable “darkening” the off state of fluorogenic probes based on BODIPY fluorophores, by favoring PeT over radiative emission from the singlet excited state manifold. Ultimately, our work brings light to the sensitivity ceiling one may achieve in developing fluorogenic antioxidant analogues of α‐tocopherol. The work provides general guidelines applicable to those developing fluorogenic probes based on PeT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号