首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A [2+2+1] cyclization strategy of bis(alkynyl)porphyrin using low-valent titanium species, generated in situ, afforded phosphole-fused dehydropurpurins for the first time. The systematic investigations on the electronic properties of the dehydropurpurins revealed their unique features owing to the oxidation states of the phosphorus atom on the fused phosphole ring. The phosphole P=O and P=S derivatives were found to possess high electron-accepting character derived from phosphorus(V) centers without the contribution of 24π antiaromatic character, suggesting their potential utility as electron-accepting materials. In contrast, the phosphorus(III) derivatives revealed different optical and electrochemical properties arising from both 18π aromatic and 24π antiaromatic networks including the lone pair of the phosphorus(III) atom. Overall, the oxidation state of the phosphorus atom has a clear impact on the whole electronic properties, demonstrating the advantages of chemical modifications of the phosphorus center for creating an exotic π-system. The application of titanium-mediated [2+2+1] cyclization to porphyrins is highly promising for expanding a world of heterole-fused porphyrinoids.  相似文献   

2.
The global and macrocyclic aromaticity of porphyrinoids was characterized using our graph theory of aromaticity. The sequential line plots of topological resonance energy (TRE) against the number of π-electrons (N(π)) for different porphyrinoids are similar with four major extrema to those for five-membered heterocycles. This supports the view that five-membered rings are the main origin of global aromaticity in porphyrinoids. Macrocyclic circuits contribute significantly to macrocyclic π-circulation but modestly to global aromaticity. Macrocyclic aromaticity/antiaromaticity in oligopyrrolic macrocycles can be predicted by formally applying Hückel's [4n + 2] rule to an annulene-like main macrocyclic conjugation pathway (MMCP). This bridged annulene model can be justified by examining the contribution of individual macrocyclic circuits to macrocyclic aromaticity. A Hückel-like rule of macrocyclic aromaticity was found for porphyrinoid species.  相似文献   

3.
The Lewis acid catalyzed self-condensation of hybrid diheterole (furan-pyrrole and thiophene-pyrrole) precursors has afforded novel Hückel antiaromatic 24π hexaphyrin(1.0.1.0.1.0) and 32π octaphyrin(1.0.1.0.1.0.1.0) structures without β-annulated bridges. Single-crystal X-ray diffraction analysis of the hybrid porphyrinoids ( S3N3-ox and O4N4-ox ) revealed a nearly planar conformation and the 1H NMR spectra suggest the presence of paratropic ring currents. These antiaromatic macrocycles show characteristic optical features and underwent reversible two-electron reduction to Hückel aromatic 26π- and 34π-electron species, respectively, as is evident from the results of spectroscopic and theoretical studies (nucleus-independent chemical shift (NICS) and anisotropy of the current-induced density (ACID) calculations). The incorporation of hybrid diheteroles alternately into expanded porphyrin skeletons provides a novel approach to the fine-tuning of the electronic structures of planar antiaromatic macrocycles.  相似文献   

4.
In this study, we have investigated the relationship between aromaticity and photophysical properties of trifluoromethyl-substituted [18]/[20]π porphycenes by using theoretical calculations and various spectroscopic methodologies. Interestingly, we have found that the HOMO-LUMO gap of [20]π porphycene is larger than that of [18]π porphycene, which is in a sharp contrast with those of typical [4n]/[4n+2]π porphyrinoids. Based on our observations, we demonstrate that the origin of this contrasting feature of [20]π porphycene arises from the uniquely large energy splitting between LUMO and LUMO+1 of [18]π porphycene compared with other aromatic [4n+2]π porphyrinoids with nearly degenerate LUMO/LUMO+1. Consequently, we can propose that the energy difference between LUMO and LUMO+1 levels of aromatic [4n+2]π porphyrinoids is an important factor in determining the electronic nature of their corresponding antiaromatic [4n]π porphyrinoids. Moreover, to the best of our knowledge, this is the first study to illustrate the photophysical properties of porphycenes with [4n]π electronic circuits.  相似文献   

5.
Interatomic magnetizability provides insight into the extent of electronic current density between two adjacent atomic basins. By studying a number of well-known aromatic, nonaromatic, and antiaromatic molecules, it is demonstrated that interatomic magnetizability (bond magnetizability) not only is able to verify the exact nature of aromaticity/antiaromaticity among different molecules, but also can distinguish the correct aromaticity order among sets of aromatic/antiaromatic molecules. The interatomic magnetizability is a direct measure of the current flux between two adjacent atomic basins and is the first QTAIM-derived index that evaluates aromaticity based on a response property, that is, magnetizability. Bond magnetizability is easy to compute, straightforward to interpret, and can be employed to evaluate the pure π- or σ-orbital contributions to magnetic aromaticity.  相似文献   

6.
Sapphyrin is a pentapyrrolic expanded porphyrin with a 22π aromatic character. Herein, we report the synthesis of a 20π antiaromatic sapphyrin isomer 1 by oxidative cyclization of a pentapyrrane precursor P5 with a terminal β-linked pyrrole. The resulting isomer 1 , containing a mis-linked bipyrrole unit in the skeleton, exhibits a reactivity for further oxidation due to the distinct antiaromatic electronic structure, affording a fused macrocycle 2 , possessing a spiro-carbon-containing [5.6.5.6]-tetracyclic structure. Subsequent treatment with an acid afforded a weakly aromatic pyrrolone-appended N-confused corrole 3 , and thermal fusion gave a [5.6.5.7]-tetracyclic-ring-embedded 14π aromatic triphyrin(2.1.1) analog 4 . The cyclization at the mis-linked pyrrole moiety of P5 played a crucial role in synthesizing the antiaromatic porphyrinoid susceptible to facile transformation to novel porphyrinoids with variable aromaticity.  相似文献   

7.
Novel expanded porphyrinoids with advanced structure features have a wide range of benefits (such as multi-metal coordination and facile tunable aromaticity) not offered by their normal porphyrin analogues. Considering research efforts have been devoted to address their limited synthetic accessibility issue. This review highlights some of these recent synthetic progresses towards these novel expanded porphyrinoids.  相似文献   

8.
Activatable near-infrared (NIR) dyes responsive to external stimuli are used in medical and other applications. Here, we describe the design and synthesis of bench-stable 18π- and 20π-electron benzitetraazaporphyrins (BzTAPs) possessing redox-switchable NIR properties. X-Ray, NMR, and UV/Visible-NIR analyses revealed that 20π-electron BzTAP 1 exhibits NIR absorption and antiaromaticity with a paratropic ring-current, while 18π-electron BzTAP 2 shows weakly aromatic character with NIR inertness. Notably, the NIR-silent BzTAP 2 was readily converted to the NIR-active BzTAP 1 in the presence of mild reducing agents such as amine. The intense NIR absorption band of BzTAP 1 is in sharp contrast to the very weak absorption bands of previously reported antiaromatic porphyrinoids. Molecular orbital analysis revealed that symmetry-lowering perturbation of the 20π-electron porphyrinoid skeleton enables the HOMO–LUMO transition of 1 to be electric-dipole-allowed. BzTAPs are expected to be useful for constructing activatable NIR probes working in reductive environments.  相似文献   

9.
Although all fullerenes do not satisfy the classical aromaticity condition, as a result of their nonplanar nature, they experience effective stabilization due to extensive cyclic π-electron delocalization and exhibit pronounced "spherical aromaticity". This feature has raised the question of the opposite phenomenon, that is, the existence of antiaromatic carbon cages. Here the first experimental evidence of the existence of antiaromatic fullerenes is reported. The elusive (#6094)C(68) was effectively captured as C(68)Cl(8) by in situ chlorination in the gas phase during radio-frequency synthesis. The chlorinated cage was separated by means of multistage HPLC, and its connectivity unambiguously determined by single-crystal X-ray analysis. Halogen-stripped pristine (#6094)C(68) was monitored by mass spectrometry of the chlorinated C(68)Cl(8) cage. Quantum chemical calculations reveal the highly antiaromatic character of (#6094)C(68), in accordance with all geometric, energetic, and magnetic criteria of aromaticity. Chlorine addition leads to substantial stabilization of the cage owing to aromatization in the resulting C(68)Cl(8), which explains its high abundance in the primary fullerene soot. This work provides new insights into the process of fullerene formation and better understanding of aromaticity phenomena in general.  相似文献   

10.
Novel expanded porphyrinoids with advanced structure features(such as multiple-inner-ring-fusion)have a wide range of benefits(such as multi-metal coordination and facile tunable aromaticity) not offered by their normal porphyrin analogues,and have found wide applications as sensors,fluorescent probes,novel ligands and functionalized NIR organic dyes in various research fields.However,the structures of these expanded porphyrinoids are scarce due to their limited synthetic accessibility.Herein,we summarized the lately reported efficient synthesis of novel expanded porphyrinoids with multipleinner-ring-fusion(up to six-inner-ring-fusion) and smaragdyrins with tunable aromaticity.Their synthesis is either based on an oxidative ring cyclization on linear/macrocyclic oligopyrroles containing N-confused pyrrole unit(s) or a straightforward double SNAr reaction on readily available 3,5-dibromoBODIPY,respectively.  相似文献   

11.
Heterocyclic diradicaloids with atom-precise control over open-shell nature are promising materials for organic electronics and spintronics. Herein, we disclose quinoidal π-extension of a B/N-heterocycle for generating B/N-type organic diradicaloids. Two quinoidal π-extended B/N-doped polycyclic hydrocarbons that feature fusion of the B/N-heterocycle motif with the antiaromatic s-indacene or dicyclopenta[b,g]naphthalene core were synthesized. This quinoidal π-extension and B/N-heterocycle leads to their open-shell electronic nature, which stands in contrast to the multiple-resonance effect of conventional B/N-type emitters. These B/N-type diradicaloids have modulated (anti)aromaticity and enhanced diradical characters comparing with the all-carbon analogues, as well as intriguing properties, such as magnetic activities, narrow energy gaps and highly red-shifted absorptions. This study thus opens the new space for both of B/N-doped polycyclic π-systems and heterocyclic diradicaloids.  相似文献   

12.
The singlet ground states and lowest triplet states of penta- and heptafulvene, their benzannulated derivatives, as well as the lowest quintet states of pentaheptafulvalenes, either the parent compound or compounds in which the two rings are intercepted by either an alkynyl or a phenyl segment, were investigated at the (U)OLYP/6-311G(d,p) density functional theory level. The influence of (anti)aromaticity was analyzed by the structure-based aromaticity index HOMA, the harmonic oscillator model of aromaticity. The extent of (anti)aromatic character was also evaluated in terms of the π-electron (de)localization as measured by the π component of the electron localization function (ELF(π)). The natural atomic orbital (NAO) occupancies were calculated in order to evaluate the degree of π-electron shift caused by the opposing electron-counting rules for aromaticity in the electronic ground state (S(0); Hückel's rule) and the first ππ* excited triplet state (T(1); Baird's rule). Pentaheptafulvalene (5) shows a shift of 0.5 π electrons from the 5-ring to the 7-ring when going from the S(0) state to the lowest quintet state (Qu(1)). The pentaheptafulvalene 5 and [5.6.7]quinarene 7 were also investigated in their 90° twisted conformations. From our study it is apparent that excitation localization in fulvalenes, but not in fulvenes, to a substantial degree is determined by aromaticity localization to triplet biradical 4n π-electron cycles. Isolated benzene rings in these compounds tend to remain as closed-shell 6π-electron cycles.  相似文献   

13.
Triangularly shaped, contracted porphyrinoids belong to a group of molecules where the geometry significantly modifies the observed electronic properties. The need for a controllable, effective, and widely applicable approach to triphyrins drives extensive research towards macrocyclic materials that act as potential controlling motifs by switching their aromaticity. Two isomeric thiophene‐fused triphyrins(2.1.1) were synthesized by applying an innovative approach. Spectroscopic techniques (NMR, UV/Vis) show that both macrocycles are aromatic and quantitatively convert into anti‐aromatic structures after reduction with a zinc amalgam. The reduced forms were stabilized through boron(III) coordination, thereby allowing the observation of anti‐aromatic 16 π delocalization within a contracted porphyrin.  相似文献   

14.
Although aromaticity has been observed in inorganic and all-metal species, the concept of antiaromaticity has not been extended beyond organic molecules. Here, we present theoretical and experimental evidence that the 6 -electron tetrapnictogen dianions in Na+Pn42- (Pn = P, As, Sb) undergo a transition from being aromatic to antiaromatic upon electron detachment, yielding the first inorganic antiaromatic Na+Pn4- molecules. Two types of antiaromatic structures were characterized, the conventional rectangular species and a new peculiar quasiplanar rhombus species. Aromaticity and antiaromaticity in the tetrapnictogen molecules were derived from molecular orbital analyses and verified by experimental photodetachment spectra of Na+Pn42-. On the basis of our findings for the tetrapnictogen clusters, we predicted computationally that the organic C4H4- anion also possesses two antiaromatic structures: rectangular and rhombus. Moreover, only the rhombus antiaromatic minimum was found for the radical NC3H4, thus extending the peculiar rhombus antiaromatic structure first uncovered in inorganic clusters into organic chemistry.  相似文献   

15.
Abstract

A novel π-π* conjugate system photo-catalyst was successfully constructed using aniline, pyrrole and TiO2. The structures of photo-catalyst were measured by XRD, SEM, BET, TEM, FT-IR, XPS and TGA in detail. The photocatalytic properties were investigated in rhodamine B and methyl orange solution, respectively. And the enhance mechanism of π-π* conjugate system was discussed in depth. The weight percentage of Ti weight about 47% in the compound and the π-π* conjugate system did not change the crystal structure of TiO2. The photocatalytic degradation properties of the π-π* conjugate system photo-catalyst could get 99% for rhodamine B and methyl orange after 10 and 15?min, respectively. The introduction of the π-π* conjugate system into TiO2 was beneficial to improve light harvest, photoelectric response and separation of electron-holes.  相似文献   

16.
The absolute configurations of 2-cyclohexenone cis-diol metabolites resulting from the biotransformation of the corresponding phenols have been determined by comparison of their experimental and calculated circular dichroism spectra (TDDFT at the PCM/B2LYP/Aug-cc-pVTZ level), optical rotations (calculated at the PCM/B3LYP/Aug-cc-pVTZ level) and by stereochemical correlation. It is found that circular dichroism spectra and optical rotations of 2-cyclohexenone derivatives are strongly dependent on the ring conformation (M or P sofa S(5) or half-chair), enone non-planarity and the nature and positions of the hydroxy and alkyl substituents. The effect of non-planarity of the enone chromophore, including the distortion of the C=C bond, is determined for the model structures by TDDFT calculations at the PCM/B2LYP/6-311++G(2d,2p) level. Non-planarity of the C=C bond in the enone chromophore is commonly encountered in 2-cyclohexenone derivatives and it is a source of significant rotatory strength contribution to the electronic circular dichroism spectra. It is shown that the two lowest-energy transitions in acrolein and 2-cyclohexenone and its derivatives are n(C=O)-π(C=O)* and π(C=C)-π(C=O)*, as expected, while the shorter-wavelength (below 200 nm) transitions are of more complex nature. In 2-cyclohexenone and its alkyl derivatives it is predominantly a mixture of π(C=C)-π(C=C)* and π(C=C)-σ* transitions, whereas the presence of hydroxy substituent results in a dominant contribution due to the n(OH)-π(C=O)* transition. A generalized model for correlation of the CD spectra of 2-cyclohexenones with their structures is presented.  相似文献   

17.
18.
Benzodisilacyclobutadienes 2 a – c were isolated as blue to green crystalline solids from the reaction of stable disilyne 1 and 1,2‐dibromobenzenes in the presence of potassium graphite. In the solid state, substantial bond alternation was observed within the benzene rings of 2 a – c . In hexane, 2 a – c showed remarkable bathochromic shifts of the π→π* (HOMO→LUMO) absorption bands at 625–670 nm. NMR spectra and theoretical calculations indicated that the diamagnetic ring currents of the benzene rings of 2 a – c are considerably reduced by contributions from the antiaromatic 1,2‐disilacyclobutadienes. In their entirety, the obtained results indicate that 2 a – c represent 8π‐electron systems that contain an antiaromatic 1,2‐disilacyclobutadiene.  相似文献   

19.
A systematic investigation to arrange the typical anti-aromatic porphyrinoids in sequence was performed. Based on density functional theory calculations, six rules are summarized to obtain the high-performance anti-aromatic porphyrinoids: (1) when two atoms are deleted/added on the 18π electron current ring flowing pipe, we will immediately obtain a 16π/20π electron anti-aromatic system; (2) it is a good idea to increase the number of pyrrole/thiophen/furan units on the π-electron current ring flowing pipe; (3) the heteroatom selecting order is −O− (optimal choice), −NH− (second choice), and −S− (last choice); (4) it is worth noting that the C−C=C−C unit is not beneficial for the anti-aromatic properties; (5) it is very significant to avoid the crowded environment in the core space of an anti-aromatic molecule. In this view, −O− is much better than −S− and −NH−; (6) the “circular” skeleton is much better than an “ellipse-like”, “rectangular”, or “parallelogram-like” one.  相似文献   

20.
The dianion, 5(2-), and dication, 5(2+), of tetrabenzo[5.7]fulvalene represent an aromaticity/antiaromaticity continuum in which the fluorenyl system changes from aromatic in 5(2-) to antiaromatic in 5(2+). Conversely, the antiaromatic dibenzotropylium system of 5(2-) becomes an aromatic system in 5(2+), allowing an examination of aromaticity/antiaromaticity within the same carbon framework. Dianion 5(2-) was prepared and characterized by (1)H NMR spectroscopy. The fluorenyl system of 5(2-) showed the downfield shifts expected for an aromatic system, while the dibenzotropylium system showed the paratropic shifts expected for an antiaromatic system. The conclusions from (1)H NMR spectroscopy were supported by NICS(1) zz calculations for each system. Comparison of the (1)H NMR spectrum and NICS(1) zz of 5(2-) with those of 5(2+) supported the assignments of aromaticity/antiaromaticity for each system. Aromaticity/antiaromaticity were further examined through comparison of the degree of bond length alternation, which showed that the bond length alternation was slightly greater for the antiaromatic ring systems than for the aromatic systems. However, when structures of 5(2-) and 5(2+) with no bond length alternation were examined, there was a dramatic increase in the degree of antiaromaticity for the antiaromatic ring systems as evaluated through NICS. This result suggests that a decrease in bond length alternation results in an increase in antiaromaticity as well as an increase in aromaticity. The magnitude of the antiaromaticity of the fluorenyl system in 5(2+) was greater than the magnitude of the aromaticity in the fluorenyl system of 5(2-), with similar effects shown by the analogous tropylium systems. This is consistent with the behavior of the antiaromatic dication of tetrabenzo[5.5]fulvalene, compared to that of its aromatic dianion, and also with the behavior of the cyclopentadienyl cation/anion and tropylium cation/anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号