首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the seven acid-insoluble lignin preparations from barley straw were first extracted with alkaline hydrogen peroxide in order to study how the delignification and degradation of the lignin is influenced by aqueous 1.5% H2O2 extractant to straw ratios. The results showed that treatment of dewaxed barley straw with 1.5% H2O2 at 45°C for 14 h (pH 12.0) under the extractant to straw ratios of 10:1, 13:1, 15:1, 18:1, 20:1, 25:1, and 30:1 resulted in dissolution of 65.8%, 68.4%, 68.4%, 69.0%, 69.7%, 71.6%, and 72.3% of the original lignin and 78.7%, 79.8%, 82.3%, 83.4%, 84.8%, 85.3%, and 85.3% of the original hemicelluloses, respectively. The degraded seven lignin samples were analyzed with respect to their chemical compositions, content of chemically linked polysaccharides, molecular weights and structural changes. It was found that the alkaline peroxide treatment under the conditions given led to a noticeable increase in a amount of carboxyl groups due to the oxidation. The results from 13C-NMR analyses showed that the treatment was extremely effective for isolation of highly pure lignins from the straw, and the treatment under the conditions used did not affect the overall structure of lignin. The β-O-4 ether bond and β-β carbon-carbon linkage were found to be the major linkages between lignin units. Hydroxycinnamic acids, such as p-coumaric and ferulic acids, appeared to be strongly linked to lignin molecules, in which p-coumaric acid was found to be bonded to lignin by ester linkage, while ferulic acid was linked by its phenolic group via ether bond to lignin and also principally linked by its carboxyl group via ester bond to lignin and/or hemicelluloses.  相似文献   

2.
To reduce the recalcitrance and enhance enzymatic activity, dilute H2SO4 pretreatment was carried out on Alamo switchgrass (Panicum virgatum). Ball-milled lignin was isolated from switchgrass before and after pretreatment. Its structure was characterized by 13C, HSQC, and 31P NMR spectroscopy. It was confirmed that ball-milled switchgrass lignin is of HGS type with a considerable amount of p-coumarate and felurate esters of lignin. The major ball-milled lignin interunit was the β-O-4 linkage, and a minor amount of phenylcoumarin, resinol, and spirodienone units were also present. As a result of the acid pretreatment, there was 36% decrease of β-O-4 linkage observed. In addition to these changes, the S/G ratio decreases from 0.80 to 0.53.  相似文献   

3.
A new protected 2-deoxy-D -ribose derivative, 5-O-[(tert-butyl)diphenylsilyl]-2-deoxy-3,4-O- isopropylidene-aldehydo-D -ribose ( 5 ), was synthesized starting from 2-deoxy-D -ribose. This compound was coupled with 2-lithio-4-(4,5-dihydro-4,4-dimethyloxazol-2-yl)pyridine giving a D /L -glycero-mixture 7 of 5-O-[(tert-butyl)diphenylsilyl]-2-deoxy-1-C-[4-(4,5 -dihydro-4,4-dimethyloxazol-2-yl)pyridin-2-yl]-3,4-O-isopropylidene- D -erythro-pentitol. The mixture 7 was 1-O-mesylated with methanesulfonyl chloride and subsequently treated with CF3COOH/H2O and ammonia to afford the α/β-D -anomers 10 of 2-(2-deoxy-D -ribofuranosyl)pyridine-4-carboxamide. Both anomers were purified and separated by HPLC and identified by NMR and DCI-MS. Anomer β-D - 10 was evaluated against a series of tumor-cell lines and a variety of viral strains. No antitumor or antiviral activity was observed.  相似文献   

4.
ABSTRACT

The synthesis of 7-O-α-L-daunosaminyl-4-O-methyl-β-rhodomycinone (3) and the determination of its cytotoxic potency compared to that of the natural 7-O-α-L-dau-nosaminyl-β-rhodomycinone (4) are described. Starting with natural β-rhodomycinone (7), trimethylsilyl protecting groups were attached to the hydroxy groups at position 7 and 10, and the 4-OH group was subsequently methylated (MeI/Cs2CO3), thus providing the 4-O-methyl-7, 10-bis-O-trimethylsilyl-β-rhodomycinone (10). The two TMS groups were then deblocked to give 4-O-methyl-β-rhodomycinone (12). In a 3-stage synthesis 12 was converted into 4-O-methyl-10-O-trifiuoroacetyl-ß-rhodomycinone (15) to which l, 4-bis-O-p-nitrobenzoyl-3-N-trifluoroacetyl-L-daunosamine 16 was selectively linked to afford the 7-O-α-glycoside 17. The acyl protective groups are removed by treatment with 1N NaOH to give 3.  相似文献   

5.
Abstract

A stereocontrolled, facile total synthesis of ganglioside GM2 is described. Coupling of 2- (trimethylsilyl)ethyl O-(2,6-di-O-benzyl-(β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2), prepared from 2-(trimethylsilyl)ethyl β-lactoside (1) by selective 3′,4′-O-isopropylidenation, O-benzylation, and subsequent removal of the isopropylidene group, with methyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy -2-thio-D-glycero-D-galacto -2-nonulopyranosid)onate (4) using N-iodosuccini-midc (NIS), gave the trisaccharide (5), which on condensation with methyl 6-O-benzoyl -2-dcoxy-3,4-O-isopropylidene-2-phthalimido-l-thio-β-D-galactopyranoside (11), gave the protected ganglioside GM2 oligosaccharide 12. Compound 12 was transformed, via O-deisopropylidenation, O-acetylation, removal of the phthaloyl group, N-acetylation, removal of the benzyl groups followed by (O-acetylation, selective removal of the 2-(rximethylsilyl)ethyl group, and subsequent imidate formation, into the final glycosyl donor 19. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (20) with the α-trichloroacetimidate 19 gave the β-glycoside 21, which on channeling through selective reduction of the azide group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title ganglioside.  相似文献   

6.
《中国化学快报》2022,33(9):4357-4362
Selective cleavage of robust C?C bonds to harvest value-added aromatic oxygenates is an intriguing but challenging task in lignin depolymerization. Photocatalysis is a promising technology with the advantages of mild reaction conditions and strong sustainability. Herein, we show a novel urchin-like Nb2O5 hollow microsphere (U-Nb2O5 HM), prepared by one-pot hydrothermal method, are highly active and selective for Cα?Cβ bond cleavage of lignin β-O-4 model compounds under mild conditions, achieving 94% substrate conversion and 96% C?C bond cleavage selectivity. Systematic experimental studies and density functional theory (DFT) calculations revealed that the superior performance of U-Nb2O5 HMs arises from more exposed active sites, more efficient free charge separation and the active (001) facet, which facilitates the activation of Cβ?H bond of lignin models and generate key Cβ radical intermediates by photogenerated holes, further inducing the Cα?Cβ bond cleavage to produce aromatic oxygenates. This work could provide some suggestions for the fabrication of hierarchical photocatalysts in the lignin depolymerization system.  相似文献   

7.
ABSTRACT

An efficient, chemoenzymatic synthesis of ganglioside GM4 analogs having a potent immunosuppressive activity is described. One-step and highly regìoselective 6-O-acetylation of long-chain alkyl, 2-(trimethysilyl)ethyl and phenyl 1-thio β-D-galactopyranosides was performed by using vinyl acetate and lipase PS. The resulting 6-O-acetates (70-93%) were sialylated with methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-2-nonulopyranosid)onate promoted by N-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH). The 2-(trimethylsilyl)ethyl glycoside derivative was converted to the imidate which was then coupled with dodecan-1-ol, hexadecan-1-ol, and 2-(tetradecyl)hexadecan-1-ol, respectively, to give the protected GM4 derivatives (90-96%). O-Deacylation and saponification of the methyl ester gave the target ganglioside GM4 analogs in high yields.  相似文献   

8.
Starting from the finding that methyl 2,3,4,6-tetra-O-sulfonato-β-D-glucopyranoside (3) existed in a conformational equilibrium of the two chair conformers, the effect of sulfation on conformational equilibria was further investigated using a number of sulfated saccharides. Three sulfate groups on positions 3,4, and 6 or two on positions 2 and 3 were not sufficient to induce the conformational change as shown with methyl 2-amino-2-deoxy-3,4,6-tri-O-sulfonato-β-D-glucopyranoside. N-Sulfation of the amino group of the latter compound furnished an equilibrium of chair conformers with less 1 C 4 conformer content than for 3. The presence of persulfated methyl β-D-galactopyranoside in the usual 4 C 1 conformation suggested the involvement of the 4-O-sulfate in the effect. Methyl 2,3,4-tri-O-sulfonato-β-D-xylopyranoside was found to prefer the “all-axial” 1 C 4 conformation demonstrating that O-sulfates facilitate 1,3-O/O-diaxial interactions better than ester groups and in particular benzoates. Also, sulfated 1,5-anhydro-D-glucitol occurred as a conformational mixture, the influence of the anomeric effect may thus have been overestimated in the previous discussion of this conformational effect.  相似文献   

9.
10.
Separation and Characterization of the cis-Isomers of β,β-Carotene A stable HPLC. system is described allowing the excellent separation of 11 different cis-isomers of β,β-carotene from the all-trans compound. The system is applied to the analysis of cis/trans mixtures obtained from plant extracts and by photoisomerization of the all-trans isomer. Al2O3 is used as the stationary phase while hexane with controlled H2O content is utilized as the mobile phase. With the aid of the optimum conditions 8 sufficiently stable cis isomers were isolated and their structures shown to be the 9-, 13- and 15-cis, the 9,9′-, 9, 13-, 9, 13′- and 13,13′-di-cis and, tentatively, the 9,13,13′-tri-cis β,β-carotenes by application of 270-MHz-FT.-1H-NMR. spectroscopy.  相似文献   

11.
Abstract

A stereo controlled, facile total synthesis of gangliosides GM1 and GD1a, in connection with systematic synthesis of ganglio-series of ganglioside, is described. Glycosylation of 2-(trimethylsilyl) ethyl O-(2-acetamido-6-O-benzoyl-2-deoxy-(β-D-galactopyranosyl)-(l→4)-O-[(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2–nonulopyranosylonate)-(2→3)]-O-2,6-di-O-benzyl-β-D-galacto-pyranosyl)-(l→40)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4), with methyl 2,4,6-tri-O-benzoyl-3-O-benzyl-l-thio-β-D-galactopyranoside (8) or methyl O-(methyl 5-acetamido -4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-l-thio-β-D-galactopyranoside (9) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) or dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the corresponding [β-glycoside 10 and 18 in 66 and 62% yields, which were converted, via reductive removal of the benzyl groups, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and subsequent imidate formation, into the α-trichloroacetimidates 13 and 21. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (14) with 13 or 21 by use of trimethylsilyl trifluoromethanesulfonate gave the corresponding β-glycoside 15 and 22, which on channeling through selective reduction of die azido group, coupling of the thus formed amino group with octadecanoic acid, O-deacylation, and saponification of the methyl ester group, gave the tital gangliosides GM1 and GD1a.  相似文献   

12.
Abstract

Conformational investigations using 1D TOCSY and ROESY 1H NMR experiments on 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hexopyranosyl)-2-deoxy-β-D-glucopyranose (8) and related disaccharides showed that for steric reasons the C-linked hexopyranosyl ring occurs in the usually unfavoured 1C4 conformation and reconfirmed the structure of 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-2-deoxy-β-D-glucopyranose (5). Glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (13) with acetate 8 using trimethylsilyl triflate as a catalyst afforded the α-D-linked tetrasaccharide 14. A remarkable side product in this reaction was the unsaturated tetrasaccharide 2,3,6-tri-O-benzyl-4-O-[4,6-di-O-acetyl-2,3-dideoxy-2-C-(4,6-di-O-acetyl-2,3-dideoxy-β-D-erythro-hexopyranosyl)-α-D-erythro-hex-2-enopyranosyl]-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (16) where in the C-linked hexopyranosyl ring an isomerization to the β-anomer had taken place to allow for the favoured 4C1 conformation. The tetrasaccharide 14 was deacetylated and hydrogenolyzed to form the fully deprotected tetrasaccharide 18. The 1 C 4 conformation of the C-glycosidic pyranose of this tetrasaccharide was maintained as shown by an in depth NMR analysis of its peracetate 19.  相似文献   

13.
ABSTRACT

3-O-Sulfo glucuronyl paragloboside derivatives (pentasaccharides) have been synthesized. The important intermediate designed for a facile sulfation in the last step and effective, stereocontrolled glycosidation, methyl (4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-α-D-glucopyranosyl trichloroacetimidate)uronate (8) was prepared from methyl [2-(trimethylsilyl)ethyl β-D-glucopyranosid]uronate (3) via selective 4-O-acetylation, 2-O-benzoylation, 3-O-levulinoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation. The glycosylation of 8 with 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (9) using trimethylsilyl trifluoromethanesulfonate gave 2-(trimethylsilyl)ethyl O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (10), which was transformed via removal of the benzyl group, benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the disaccharide donor 13. On the other hand, 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (20) as the acceptor was prepared from 2-(trimethylsilyl)ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) via O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, imidate formation, coupling with 2-(trimethylsilyl)ethyl O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (18), removal of the O-acetyl and N-phthaloyl group followed by N-acetylation. Condensation of 13 with 20 using trimethylsilyl trifluoromethanesulfonate afforded the desired pentasaccharide 21, which was transformed by removal of the benzyl group, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the pentasaccharide donor 24. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (25) with 24 gave the desired β-glycoside 26, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

14.
ABSTRACT

3-O-Sulfo glucuronyl neolactohexanosyl ceramide derivatives (heptasaccharides) have been synthesized. Condensation of 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 4-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (1) gave the desired β-glycoside 3, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (4) via removal of the O-acetyl and N-phthaloyl groups, followed by N-acetylation. Glycosylation of 4 with O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (5) using trimethylsilyl trifluoromethanesulfonate gave the target tetrasaccharide 6, which was transformed via removal of the benzyl group, O-benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the tetrasaccharide donor 9. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (10) with the imidate donor 9 using trimethylsilyl trifluoromethanesulfonate gave the desired heptasaccharide 11, which was transformed into the heptasaccharide imidate donor 14. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) with 14 gave β-glycoside 16, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

15.
Cerium (IV) oxidations of model compounds for the hydroxylic functional groups of cellulose were conducted in 1.0M perchloric acid. Glucose, the model selected for the reducing end group, was oxidized 360 times faster than Schardinger β-dextrin, the model for anhydro-D -glucose repeating units. In the presence of a fourfold excess of glucose, stoichiometry indicated specific conversion to arabinose; the competitive oxidation of arabinose produced is insignificant. Specific C1–C2 bond cleavage was also indicated for 2-O-methyl-D -glucose, galactose, 2-O-methyl-D -galactose, and cellobiose. Anhydro-D -glucose units were oxidized predominantly by C2–C3 bond cleavage as shown by the identification of erythrose and glyoxal in hydrolyzates of cerium (IV) oxidized Schardinger β-dextrin and cellulose. Kinetic studies showed that chelate complexes were involved in oxidations of glucose, methyl β-D -glucopyranoside, 1,5-anhydro-D -glucitol, and Sahardinger β-dextrin. The oxidations of glucose derivatives which differed with respect to substituents on C1 and C2 demonstrated the importance of the hemiacetal group and the presence of oxygen on C2. For example, the relative rates of oxidation at 15°C for methyl β-D -glucopyranoside, 1,5-anhydro-D -glucitol, 2-deoxy-D -glucose, glucose, and 2-O-methyl-D -glucose are 1:1:12:360:1860, respectively. The mechanism of glucose oxidation is thought to involve formation of a chelate complex, disproportionation of the complex to form a free radical at either C1 or C2 and further rapid oxidation to 4-O-formyl-D -arabinose which is hydrolyzed in the reaction medium. General implications of the experimental results pertaining to initiation of vinyl graft polymerization on cellulose are discussed.  相似文献   

16.
Abstract

Four sialyl and sulfo Lex analogs containing glucose in place of N-acetylglucosamine, and a ceramide or 2-(tetradecyl)hexadecyl residue, have been synthesized. Condensation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-diO-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (1) with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3, diol (2) or 2-(tetradecyl)-hexadecyl-1-ol (3) gave the corresponding β-glycosides 4 and 7. Compound 4 was converted into the ganglioside 6 via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and saponification of the methyl ester group. Hydrolysis of the O-acyl groups in 7 followed by saponification of the methyl ester, gave sialyl Lex ganglioside analog 8 containing a branched fatty alkyl residue. On the other hand, glycosylation of O-(4-O-acetyl-2,6-di-O-benzoyl-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-[O-(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (13), prepared from 2-(trimethylsilyl)ethyl O-(2,6-di-O-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-β-d-glucopyranoside (9) via selective 3-O-levulinylation, acetylation, removal of the 2-(trimethylsilyl)ethyl group, with 2 or 3, gave the desired β-glycosides 14 and 19. Selective reduction of the axido group in 14 followed by coupling with octadecanoic acid gave the ceramide derivative 16. Removal of the levulinyl group in 16 and 19, treatment with sulfur trioxide pyridine complex and subsequent hydrolysis of the protecting groups yielded the corresponding sulfo Lex analogs 18 and 21.  相似文献   

17.
Reaction of 2-trifluoromethyl- or 2-cyanonaphth[2,3-d] imidazole (1 or 2) with 1-O-acetyl-2,3,5-tri-O- benzoyl-β-D-ribofuranose (3), using the triflate or fusion method afforded 2-trifluoromethyl-1-(2,3,5-tri- O-benzoyl-α-D- or -β-D-ribofuranosyl)naphth[2,3-d]imidazole (4 or 6) and 2-cyano-1-(2,3,5-tri-O-benzoyl-α-D- or β-D-ribofuranosyl)naphth[2,3,-d] imidazole (5 or 7), respectively. The products 4 and 5 or 6 and 7 were separated by chromatography on silica gel. Treatment of the blocked nucleosides 4-7 with methanolic NH3 at 0 °C furnished the deblocked nucleosides 8-11 respectively. Treatment of 10 with 5% NH3 (aq) at 60 °C gave 11. Structural elucidation is based on elemental analysis, UV, FAB-MS and 1H NMR spectra. Compounds 4-11 were subjected to antibacteial testing. Compounds 5, 7 and 10 have significant activity against Staphylococous aureus (gram positive) and Esherichia coli (gram negative) bacteria, whereas the other tested compounds showed no significant activity.  相似文献   

18.
The reaction of 1-O-hexadecyl-2-O-methyl-sn-glycerol with 2,3,6,2′,3′,4′,6′-hepta-O-acetyl-α-lactosylphosphoramidate or α-maltosylphos-phoramidate in the presence of trimethylsilyl triflate and molecular sieves afforded 1-O-hexadecyl-2-O-methyl-3-O-(2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-lactosyl)-sn-glycerolipid or β-maltosyl-sn-glycerolipid stereoselectively in moderate yields after column chromatography. Alkaline hydrolysis of the O-peracetyl glycerolipids gave the desired β-glycolipids 1 and 2.  相似文献   

19.
Abstract

DAST-assisted rearrangement of 3-O-allyl-4-O-benzyl-α-l-rhamnopyranosyl azide followed by treatment of the generated fluorides with ethanethiol and BF3·OEt2 gave glycosyl donor ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside. Stereoselective glycosylation of methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside with ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside, under the agency of NIS/TfOH afforded methyl 3-O-(3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzyli-dene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Removal of the allyl function of the latter dimer, followed by condensation with properly protected 2-azido-2-deoxy-glucosyl donors, in the presence of suitable promoters, yielded selectively methyl 3-O-(3-O-[6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranosyl]-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Deacetylation and subsequent glycosylation of the free HO-6 with phenyl 2,3,4,6-tetra-O-benzoyl-1-seleno-β-D-glucopyranoside in the presence of NIS/TfOH furnished a fully protected tetrasaccharide. Deprotection then gave methyl 3-O-(3-O-[6-O-{β-D-glucopyranosyl}-2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-acetamido-2,6-dideoxy-α-L-glucopyranosyl)-2-acetamido-2-deoxy-β-D-glucopyranoside.  相似文献   

20.
Abstract

A stereocontrolled synthesis of α-series ganglioside GM1α (III6Neu5AcGgOse4Cer) is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (1) with the suitably protected galactosamine donor, methyl 3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-galactopyranoside (4) gave the desired trisaccharide, which was transformed into the trisaccharide acceptor via removal of the phthaloyl and O-acetyl groups followed by N-acetylation. Glycosylation of this acceptor with methyl 3-O-benzyl-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) gave the asialo GM1 saccharide derivative, which was transformed into the acceptor by removal of benzylidene group. Coupling of this gangliotetraose acceptor with phenyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d-glcero-d-galacto-2-nonulopyranosyl)onate by use of NIS-TfOH afforded the desired GM1α oligosaccharide derivative in high yield, which was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor. Condensation of this imidate derivative with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) gave the β-glycoside, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound GM1α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号