首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first cyclization reaction between vinyl azides and N‐sulfonyl‐1,2,3‐triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H‐pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields.  相似文献   

2.
Vilsmeier–Haack‐type cyclization of 1H‐indole‐4‐propanoic acid derivatives was examined as model construction for the A–B–C ring system of lysergic acid ( 1 ). Smooth cyclization from the 4 position of 1H‐indole to the 3 position was achieved by Vilsmeier–Haack reaction in the presence of K2CO3 in MeCN, and the best substrate was found to be the N,N‐dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α‐amino acid derivative protected with an N‐acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)‐ 27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S‐containing tricyclic system 22 , which was formed by a cyclization to the 5 position (Scheme 3).  相似文献   

3.
Condensation of 1‐methyl‐β‐carboline‐3‐carbaldehyde with ethyl azidoacetate and subsequent thermolysis of the resulting azidopropenoate was used to [c] annulate a pyrrole ring onto the β‐carboline moiety, thus producing the first example of the pyrrolo[3,2‐c]‐β‐carboline ring system. The latter ring system results from cyclization at the C‐4 carbon, whereas cyclization at the N‐2 nitrogen atom also occurs to form a pyrazolo[3,2‐c]‐β‐carboline ring system. Condensation of β‐carboline‐1‐carbaldehyde with ethyl azidoacetate produced a non‐isolable intermediate, which immediately underwent cyclization, however in this case cyclization occurred via attack at the ester and the azide remained intact. The resulting 5‐azidocanthin‐6‐one was transformed to the first examples of 5‐aminocanthin‐6‐ones. β‐Carboline‐1,3‐dicarbaldehyde failed to give an acceptable reaction with ethyl azidoacetate, but did undergo selective condensation with dimethyl acetylene dicarboxylate at the C‐1 carbaldehyde with concomitant cyclization to form a highly functionalized 2‐formyl‐canthine derivative.  相似文献   

4.
A convenient general synthesis of 2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]quinolines using the Wittig reaction is described. The o-nitrobenzaldehydes (1a–d) on reaction with phosphorane 2 provided ( E )-ethyl-α-(2,2-dimethylprop-2-ene)-2-nitrocinnamates (3a–d) in excellent yields, which on cyclization with polyphosphoric acid followed by reductive cyclization using Fe/HCl afforded dihydropyranoquinolines (5a–d). Alternatively, the pyranoquinolines 5a–d were also synthesised from esters 3a–d by employing domino reductive cyclization in a single step.  相似文献   

5.
Nazarov cyclization is an important and versatile method for the synthesis of five‐membered carbocycles, and extensive studies have been conducted to optimize the reaction. Among recent studies, several trends are recognized. One is the combination of different reactions with Nazarov cyclization in a one‐pot reaction system which enables the preparation of unique cyclization products. The second is the use of a transition‐metal catalyst, though Lewis or Brønsted acids have generally been used for the reaction. The third is the realization of the asymmetric Nazarov cyclization. The fourth is the base‐catalyzed Nazarov cyclization. Furthermore, several useful protocols for realizing Nazarov cyclization have also been developed. The recent progress on Nazarov cyclizations is summarized in Section 2. Section 3 is our chronicle in this field. We focused on the use of iron as the catalyst in Nazarov cyclizations and ionic liquids as solvents: Nazarov cyclization of thiophene derivatives using FeCl3 as the catalyst was accomplished and we succeeded in demonstrating the first example of an iron‐catalyzed asymmetric Nazarov reaction. We next established Nazarov cyclization of pyrrole or indole derivatives using Fe(ClO4)3·Al2O3 as the catalyst with high trans selectivities in excellent yields. Since the cyclized product was reacted with a vinyl ketone in the presence of the same iron salt, the system allowed realization of the sequential type of Nazarov/Michael reaction of pyrrole derivatives. Furthermore, we demonstrated the recyclable use of the iron catalyst and obtained the desired Nazarov/Michael reaction products in good yields for five repetitions of the reactions without any addition of the catalyst using an ionic liquid, [bmim][NTf2], as the solvent. We expect that the iron‐catalyzed Nazarov cyclization, in particular, in an ionic liquid solvent might become a useful method to synthesize functional molecules that include cycloalkene moieties.  相似文献   

6.
The asymmetric total synthesis of farnesin, a rearranged ent-kaurenoid, was achieved through a convergent approach involving photo-Nazarov and intramolecular aldol cyclizations to build the syn-syn-syn hydrofluorenol ABC ring system and bicyclo[3.2.1]octane CD ring system in the first application of a UV-light-induced excited-state Nazarov cyclization of a non-aromatic dicyclic divinyl ketone in a total synthesis. Unlike the conventional acid-promoted ground-state Nazarov reaction, the excited-state Nazarov reaction enables stereospecific formation of the highly strained syn-syn-syn-fused hydrofluorenone scaffold through a disrotatory cyclization.  相似文献   

7.
The Mills reaction and cyclization of readily available 2-aminobenzyl alcohols and nitrosobenzenes using thionyl bromide provided 2H-indazoles in up to 88 % yields. In the metal-free process, acetic acid played a crucial role for the both Mills reaction and cyclization. A brominated 2H-indazole could also be obtained through the one-pot sequence.  相似文献   

8.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

9.
Although cyclic peptides have become increasingly important as drugs, the most conventional peptide cyclization method using moderately active coupling agents suffers from a lot of waste and high cost as well as long reaction times and burdensome purification. Herein, we report an unconventional approach to peptide cyclization that uses acylammonium species generated from inexpensive and less wasteful Me2NBn and ClCO2i-Pr. Using this approach, we observed the desired rapid activation of the C-terminus of cyclization precursors by an acylammonium ion for rapid and epimerization/dimerization-free cyclization of synthetically challenging peptides, including a difficult cyclization involving N-methyl amide bond formation. The ease of purification, productivities, and reaction mass efficiencies of our approach were significantly superior to those in previous reports. We synthesized a previously reported versicotide D analogue, and our data indicated that its assigned stereostructure should be revised.  相似文献   

10.
A concise and highly stereoselective total synthesis of the Daphniphyllum alkaloids (?)‐daphenylline has been accomplished. The synthesis was started from (S)‐carvone and proceeded via a stereoselective Mg(ClO4)2‐catalyzed intramolecular amide addition cyclization, an intramolecular Diels–Alder reaction to construct the ABCD tetracyclic core architecture, and a Robinson annulation coupled with an oxidative aromatization sequence. Finally, the DF ring system was installed through an intramolecular Friedel–Crafts cyclization. The total synthesis of (?)‐daphenylline is achieved in 19 steps in the longest reaction sequence and in 7.6 % overall yield.  相似文献   

11.
The synthesis of new methylated thieno[2,3‐a] and [3,2‐b]carbazoles (5) (R=H) was achieved by a palladium‐catalyzed cross‐coupling, intramolecular reductive cyclization sequence of reactions. The cyclization precursors 6‐(2′‐nitrophenyl)benzo[b]thiophenes (3) were obtained by Suzuki cross‐coupling of 6‐boronated methylbenzo[b]thiophenes intermediates (2) with 2‐bromo or iodonitrobenzene. The boronated intermediates (2) were prepared via bromine‐lithium exchange followed by boron transmetalation and coupled in situ using Pd(OAc)2 giving thus a “one‐pot” three steps reaction from the 6‐bromobenzo[b]thio‐phenes (1) to the cyclization precursors (3) . In the reductive cyclization step, N‐ethylthienocarbazoles (5) (R=Et) were also obtained. Several experiments have been made varying the amount of triethylphosphite and the time of reaction, to avoid their formation.  相似文献   

12.
Highly enantioselective gold‐catalyzed intramolecular cyclization of N‐allenamides was implemented by utilizing a designed chiral sulfinamide phosphine ligand (PC‐Phos). This represents the first example of highly enantioselective intramolecular cyclization of N‐allenamides. The practicality of this reaction was validated in the total synthesis of (R )‐desbromoarborescidine A and formal synthesis of (R )‐desbromoarborescidine C and (R )‐deplancheine. Moreover, the catalyst system PC‐Phos/AuNTf2 proved to be specifically efficient to promote the desymmetrization of N‐allenamides in excellent yields with satisfactory ee values.  相似文献   

13.
A series of aryl‐substituted 1,3‐dithiol‐2‐ones was prepared by the Bhattacharya? Hortmann cyclization method. Unexpectedly, a Ritter reaction occurred during the acid‐catalyzed cyclization at the cyano group of the aryl substituents and 1,3‐dithiol‐2‐ones bearing a carboxy or a carboxamide group could be selectively obtained (see 1 and 2a in Scheme 1). The formation of the acid or the amide functionality was temperature‐dependent so that the one or the other group could be introduced selectively by modifying the reaction temperature.  相似文献   

14.
A novel strategy for an unconventional Pictet–Spengler reaction has been developed for the regioselective cyclization of the imidazole ring system at the C2 position. The developed strategy was utilized to develop a diversity‐oriented parallel synthesis for bis(heterocyclic) skeletal novel analogs of benzimidazole‐linked imidazoquinoxalines on a soluble polymer support under microwave conditions. Condensation of polymer‐immobilized o‐phenylenediamines with 4‐fluoro‐3‐nitrobenzoic acid followed by nucleophilic aromatic substitution with an imidazole motif affords bis(heterocyclic) skeletal precursors for the Pictet–Spengler reaction. The unconventional Pictet–Spengler cyclization with various aldehydes was achieved regioselectively at the C2 position of the imidazole ring to furnish rare imidazole‐fused quinoxaline skeletons. During the Pictet–Spengler cyclization, aldehydes bearing electron‐donating groups afford 4,5‐dihydro‐imidazoquinoxalines, which then auto‐aromatize into benzimidazole‐linked imidazo[1,2‐a]quinoxalines. However, interestingly, aldehydes bearing electron‐withdrawing groups directly provide aromatized imidazo[1,2‐a]quinoxalines, which unexpectedly afford novel benzimidazole‐linked 4‐methoxy‐4,5‐dihydro‐imidazo[1,2‐a]quinoxalines after polymer cleavage.  相似文献   

15.
The cyclization of substituted (2-pyridylthio)phenylacetic acids has been studied. It was established that reaction occurs at two reaction centers with the formation of substituted 3-imino-2-phenyl-2,3-dihydrothieno[2,3-b]pyridine-2-carboxylic acids and substituted mesoionic thiazolo[3,2-a]pyridinium-3-olates. The direction of cyclization is influenced by the acidity of the medium and the character of the substituents in the pyridine nucleus. The spectral properties of the synthesized mesoionic compounds were investigated experimentally and theoretically (by the Pariser–Parr–Pople method).  相似文献   

16.
The asymmetric total synthesis of farnesin, a rearranged ent‐kaurenoid, was achieved through a convergent approach involving photo‐Nazarov and intramolecular aldol cyclizations to build the syn‐syn‐syn hydrofluorenol ABC ring system and bicyclo[3.2.1]octane CD ring system in the first application of a UV‐light‐induced excited‐state Nazarov cyclization of a non‐aromatic dicyclic divinyl ketone in a total synthesis. Unlike the conventional acid‐promoted ground‐state Nazarov reaction, the excited‐state Nazarov reaction enables stereospecific formation of the highly strained syn‐syn‐syn‐fused hydrofluorenone scaffold through a disrotatory cyclization.  相似文献   

17.
The total synthesis of 16-membered C2–Symmetric dilactone (-)-Pyrenophorol was accomplished starting from commercially available (S)-epoxide prepared by hydrolytic kinetic resolution of (±) – epoxide with key steps of Grignard reaction, Swern oxidation, Wittig reaction and cyclization was achieved by intermolecular Mitsunobu cyclization. The synthesis of (-)-Pyrenophorol accomplished from cheaply available starting material, easily work-up procedures and reduction of cost in industrial process were major advantages of this route.  相似文献   

18.
Abstract

A new cascade oxidative cyclization reaction of N-Cbz hydrazones with internal alkynes has been explored for the preparation of isoquinoline derivatives using Cp*CoIII-catalyst through C–H and N–N bond functionalization. N-Cbz hydrazones are rarely explored as directing group for redox-neutral [4?+?2] cyclization reaction through the cyclometallation and this catalyst system does not require any external oxidizing agent, as well as, silver or antimony salt. The current efficient approach has been utilized for the synthesis of different isoquinoline derivatives with good regioselectivity and yields.  相似文献   

19.
《化学:亚洲杂志》2017,12(15):1865-1868
A facile synthesis of 2‐amino‐1,3‐oxazoles via CuI‐catalyzed oxidative cyclization of enamines and N ,N ‐dialkyl formamides has been developed. The reaction proceeds through an oxidative C−N bond formation, followed by an intramolecular C(sp2)−H bond functionalization/C−O cyclization in one pot. This protocol provides direct access to useful 2‐amino‐1,3‐oxazoles and features protecting‐group‐free nitrogen sources, readily available starting materials, a broad substrate scope and mild reaction conditions.  相似文献   

20.
The pyrolytic rearrangement of α‐alkynones has been discovered by Karpf and Dreiding [1] in 1979. The mechanism of this reaction, which involves an acetylene‐vinylidene rearrangement followed by cyclization of the intermediate vinylidene carbene by insertion into a β‐C−H bond, has been debated in a couple of theoretical investigations. Restricted Hartree‐Fock (RHF) and single‐point Møller‐Plesset 2 (MP2) calculations at the RHF geometries apparently indicate the carbene cyclization to be the rate‐determining step, contrary to chemical intuition. However, larger‐scale correlated calculations with completely optimized molecular geometries ((8,8) CASSCF/6‐311G**), augmented with a perturbative account for the dynamic correlation contribution to the electronic energy, show vanishing energy barriers to the cyclization step and large activation energies for the acetylene‐vinylidene rearrangement, which is thus confirmed as the rate‐determining step of the title reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号