首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrocatalytic water splitting has been considered as a promising strategy for the sustainable evolution of hydrogen energy and storage of intermittent electric energy. Efficient catalysts for electrocatalytic water splitting are urgently demanded to decrease the overpotentials and promote the sluggish reaction kinetics. Carbon-based composites, including heteroatom-doped carbon materials, metals/alloys@carbon composites, metal compounds@carbon composites, and atomically dispersed metal sites@carbon composites have been widely used as the catalysts due to their fascinating properties. However, these electrocatalysts are almost powdery form, and should be cast on the current collector by using the polymeric binder, which would result in the unsatisfied electrocatalytic performance. In comparison, a self-supported electrode architecture is highly attractive. Recently, self-supported metal–organic frameworks (MOFs) constructed by coordination of metal centers and organic ligands have been considered as suitable templates/precursors to construct free-standing carbon-based composites grown on conductive substrate. MOFs-derived carbon-based composites have various merits, such as the well-aligned array architecture and evenly distributed active sites, and easy functionalization with other species, which make them suitable alternatives to non-noble metal-included electrocatalysts. In this review, we intend to show the research progresses by employment of MOFs as precursors to prepare self-supported carbon-based composites. Focusing on these MOFs-derived carbon-based nanomaterials, the latest advances in their controllable synthesis, composition regulation, electrocatalytic performances in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting (OWS) are presented. Finally, the challenges and perspectives are showed for the further developments of MOFs-derived self-supported carbon-based nanomaterials in electrocatalytic reactions.  相似文献   

2.
The synthesis and characterization of a chemiluminescent metal–organic framework with high porosity is reported. It consists of Zr6O6(OH)4 nodes connected by 4,4′-(anthracene-9,10-diyl)dibenzoate as the linker and luminophore. It shows the topology known for UiO-66 and is therefore denoted PAP-UiO. The MOF was not only obtained as bulk material but also as a thin film. Exposure of PAP-UiO as bulk or film to a mixture of bis-(2,4,6-trichlorophenyl) oxalate, hydrogen peroxide, and sodium salicylate in a mixture of dimethyl and dibutyl phthalate evoked strong and long lasting chemiluminescence of the PAP-UiO crystals. Time dependent fluorescence spectroscopy on bulk PAP-UiO and, for comparison, on dimethyl 4,4′-(anthracene-9,10-diyl)dibenzoate provided evidence that the chemiluminescence originates from luminophores being part of the PAP-UiO, including the luminophores inside the crystals.  相似文献   

3.
The electrochemical reduction of CO2 presents a promising strategy to mitigate the greenhouse effect and reduce excess carbon dioxide emission to realize a carbon-neutral energy cycle, but it suffers from the lack of high-performance electrocatalysts. In this work, catalytic active cobalt porphyrin [TCPP(Co)=(5,10,15,20)-tetrakis(4-carboxyphenyl)porphyrin-CoII] was precisely anchored onto water-stable 2D metal–organic framework (MOF) nanosheets (Zr-BTB) to obtain ultrathin 2D MOF nanosheets [TCPP(Co)/Zr-BTB] with accessible catalytic sites for the CO2 reduction reaction. Compared with molecular cobalt porphyrin, the TCPP(Co)/Zr-BTB exhibits an ultrahigh turnover frequency (TOF=4768 h−1 at −0.919 V vs. reversible hydrogen electrode, RHE) owing to high active-site utilization. In addition, three post-modified 2D MOF nanosheets [TCPP(Co)/Zr-BTB-PABA, TCPP(Co)/Zr-BTB-PSBA, TCPP(Co)/Zr-BTB-PSABA] were obtained, with the modifiers of p-(aminomethyl)benzoic acid (PABA), p-sulfobenzoic acid potassium (PSBA), and p-sulfamidobenzoic acid (PSABA), to change the micro-environments around TCPP(Co) through the tuning of steric effects. Among them, the TCPP(Co)/Zr-BTB-PSABA exhibited the best performance with a faradaic efficiency (FECO) of 85.1 %, TOF of 5315 h−1, and jtotal of 6 mA cm−2 at −0.769 V (vs. RHE). In addition, the long-term durability of the electrocatalysts is evaluated and the role of pH buffer is revealed.  相似文献   

4.
Developing noble-metal-free bifunctional oxygen electrocatalysts is of great significance for energy conversion and storage systems. Herein, we have developed a transformation method for growing NiMn-based bimetal–organic framework (NiMn-MOF) nanosheets on multi-channel carbon fibers (MCCF) as a bifunctional oxygen electrocatalyst. Owing to the desired components and architecture, the MCCF/NiMn-MOFs manifest comparable electrocatalytic performance towards oxygen reduction reaction (ORR) with the commercial Pt/C electrocatalyst and superior performance towards oxygen evolution reaction (OER) to the benchmark RuO2 electrocatalyst. X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations reveal that the strong synergetic effect of adjacent Ni and Mn nodes within MCCF/NiMn-MOFs effectively promotes the thermodynamic formation of key *O and *OOH intermediates over active NiO6 centers towards fast ORR and OER kinetics.  相似文献   

5.
In the work reported herein, the electrocatalytic properties of Co3O4 in hydrogen and oxygen evolution reactions have been significantly enhanced by coating a shell layer of a copper-based metal–organic framework on Co3O4 porous nanowire arrays and using the products as high-performance bifunctional electrocatalysts for overall water splitting. The coating of the copper-based metal–organic framework resulted in the hybridization of the copper-embedded protective carbon shell layer with Co3O4 to create a strong Cu−O−Co bonding interaction for efficient hydrogen adsorption. The hybridization also led to electronically induced oxygen defects and nitrogen doping to effectively enhance the electrical conductivity of Co3O4. The optimal as-prepared core–shell hybrid material displayed excellent overall-water-splitting catalytic activity that required overall voltages of 1.45 and 1.57 V to reach onset and a current density of 10 mA cm−2, respectively. This is the first report to highlight the relevance of hybridizing MOF-based co-catalysts to boost the electrocatalytic performance of nonprecious transition-metal oxides.  相似文献   

6.
The formation, and subsequent structural, thermal and adsorptive properties of single-component metal–organic framework crystal-glass composites (MOF-CGCs) are investigated. A series of novel materials exhibiting chemically identical glassy and crystalline phases within the same material were produced, where crystalline ZIF-62(Zn) was incorporated within an agZIF-62(Zn) matrix. X-ray diffraction showed that the crystalline phase was still present after heating to above the glass transition temperature of agZIF-62(Zn), and interfacial compatibility between the crystalline and glassy phases was investigated using a mixed-metal (ZIF-62(Co))0.5(agZIF-62(Zn))0.5 analogue. CO2 gas adsorption measurements showed that the CO2 uptakes of the MOF-CGCs were between those of the crystalline and glassy phases.  相似文献   

7.
Herein, we developed a partially controlled pyrolysis strategy to create evenly distributed NiO nanoparticles within NiFe-MOF nanosheets (MOF NSs) for electrochemical synthesis of H2O2 by a two-electron oxygen reduction reaction (ORR). The elemental Ni can be partially transformed to NiO and uniformly distributed on the surface of the MOF NSs, which is crucial for the formation of the particular structure. The optimized MOF NSs-300 exhibits the highest activity for ORR with near-zero overpotential and excellent H2O2 selectivity (ca. 99 %) in 0.1 m KOH solution. A high-yield H2O2 production rate of 6.5 mol gcat−1 h−1 has also been achieved by MOF NSs-300 in 0.1 m KOH and at 0.6 V (vs. RHE). In contrast to completely pyrolyzed products, the enhanced catalytic activities of partially pyrolyzed MOF NSs-300 originates mainly from the retained MOF structure and the newly generated NiO nanoparticles, forming the coordinatively unsaturated Ni atoms and tuning the performance towards electrochemical H2O2 synthesis.  相似文献   

8.
Metal organic framework (MOF) glasses are a coordination network of metal nodes and organic ligands as an undercooled frozen-in liquid, and have therefore broadened the potential of MOF materials in the fundamental research and application scenarios. On the road to deploying MOF glasses as electrocatalysts, it remains several basic scientific hurdles although MOF glasses not only inherit the structural merits of MOFs but also endow with active catalytic features including concentrated defects, metal centers and disorder structure etc. The research on the ionic conductivity, catalytic stability and reactivity of MOF glasses has yielded scientific insights towards its electrocatalytic applications. Here, we first comb the history, definition and basic properties of MOF glasses. Then, we identify the main synthetic methods and characterization techniques. Finally, we advance the potentials and challenges of MOF glasses as electrocatalysts in furthering the understanding of these themes.  相似文献   

9.
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO2 affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO2 are created in the resulting CB6@MIL-101 composites, leading to enhanced CO2 uptake capacity and CO2/N2, CO2/CH4 separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.  相似文献   

10.
A pyrene-based metal-organic framework (MOF) SION-8 captured iodine (I2) vapor with a capacity of 460 and 250 mg g−1MOF at room temperature and 75 °C, respectively. Single-crystal X-ray diffraction analysis and van-der-Waals-corrected density functional theory calculations confirmed the presence of I2 molecules within the pores of SION-8 and their interaction with the pyrene-based ligands. The I2–pyrene interactions in the I2-loaded SION-8 led to a 104-fold increase of its electrical conductivity compared to the bare SION-8 . Upon adsorption, ≥95 % of I2 molecules were incarcerated and could not be washed out, signifying the potential of SION-8 towards the permanent capture of radioactive I2 at room temperature.  相似文献   

11.
The synthesis of solvent-less bare-surface nickel phosphides is desired, considering their superior electrocatalytic properties and straightforward synthetic protocols compared to their analogues prepared from colloidal routes. Herein, we report the synthesis of [Ni{S2P(OH)(4-CH3OC6H4)}2] (1), [Fe{S2P(OH)(4-CH3OC6H4)}3] (2) and [Co{S2P(OC4H9)(4-CH3OC6H4)}3] (3) and their utilization to form Ni2P, Fe-Ni2P and Co-Ni2P in a solvent-less pyrolysis method. This solvent-free protocol involved the decomposition of complex ( 1 ) and the composites of complex ( 1 ) with ( 2 ) or ( 3 ) in the presence of triphenylphosphine (TPP) at 400 °C for one hour. The solvent-less decomposition of complex ( 1 ) without TPP formed nickel sulfide. A plausible explanation for this rare fabrication of pristine and doped Ni2P in the absence of any solvent is suggested. All the transition metal doped phosphides improved the HER performance of pristine Ni2P, with the 5 % Fe doped Ni2P having the best performance, requiring 137 mV to reach a current density of 10 mA/cm2. Similarly, the OER performance of un-doped Ni2P was improved by all the doped Ni2P catalysts, where 10 % Fe-doped Ni2P showed the best performance requiring 326 mV to reach a current density of 10 mA/cm2. Transition metal doping was also shown to improve the reaction kinetics, stability and durability of the solvent-free prepared Ni2P.  相似文献   

12.
Processing metal–organic frameworks (MOFs) into hierarchical macroscopic materials can greatly extend their practical applications. However, current strategies suffer from severe aggregation of MOFs and limited tuning of the hierarchical porous network. Now, a strategy is presented that can simultaneously tune the MOF loading, composition, spatial distribution, and confinement within various bio-originated macroscopic supports, as well as control the accessibility, robustness, and formability of the support itself. This method enables the good dispersion of individual MOF nanoparticles on a spiderweb-like network within each macrovoid even at high loadings (up to 86 wt %), ensuring the foam pores are highly accessible for excellent adsorption and catalytic capacity. Additionally, this approach allows the direct pre-incorporation of other functional components into the framework. This strategy provides precise control over the properties of both the hierarchical support and MOF.  相似文献   

13.
Over the last decade, the controllable reversible phase transition of functional materials has received growing interest as it shows unique suitability for various technological applications. Although many metal–organic frameworks (MOFs) possess a lamellar structure, the reversible structural transformation of MOFs between their three-dimensional (3D) phase and two-dimensional (2D) phase remains a largely unexplored area. Herein, we report for the first time a europium MOF with unprecedented reversible morphology in different solvents at room temperature. This europium MOF displayed a 3D nanorod morphology in organic solvent and a 2D nanobelt architecture in water. As a proof of concept for potential applications of this reversible-phase-transition MOF, we were able to use a delamination recovery method to load dye molecules that previously could not be loaded into europium MOFs.  相似文献   

14.
Amorphization of various solid materials has attracted increasing attentions. We report here an amorphization of metal–organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) using dielectric-barrier discharge (DBD) treatment at ambient pressure and low gas temperature (around 120°C). The irreversible amorphization was confirmed by x-ray diffraction (XRD) characterization. The result of N2 adsorption–desorption measurements revealed a collapse of pores, which further supported the XRD results. The destroying of part of carboxylate groups might be the main reason resulting in the amorphization of MOF-5.  相似文献   

15.
16.
A triphosphaazatriangulene (H3L) was synthesized through an intramolecular triple phospha-Friedel–Crafts reaction. The H3L triangulene contains three phosphinate groups and an extended π-conjugated framework, which enables the stimuli-responsive reversible transformation of [Cu(HL)(DMSO)⋅(MeOH)]n, a 3D-MOF that exhibits reversible sorption characteristics, into (H3L⋅0.5 [Cu2(OH)4⋅6 H2O] ⋅4 H2O), a 1D-columnar assembled proton-conducting material. The hydrophilic nature of the latter resulted in a proton conductivity of 5.5×10−3 S cm−1 at 95 % relative humidity and 60 °C.  相似文献   

17.
In this report, a 2D MOF nanosheet derived Pd single-atom catalyst, denoted as Pd-MOF, was fabricated and examined for visible light photocatalytic hydrogen evolution reaction (HER). This Pd-MOF can provide a remarkable photocatalytic activity (a H2 production rate of 21.3 mmol/gh in the visible range), which outperforms recently reported Pt-MOFs (with a H2 production rate of 6.6 mmol/gh) with a similar noble metal loading. Notably, this high efficiency of Pd-MOF is not due to different chemical environment of the metal center, nor by changes in the spectral light absorption. The higher performance of the Pd-MOF in comparison to the analogue Pt-MOF is attributed to the longer lifetime of the photogenerated electron-hole pairs and higher charge transfer efficiency.  相似文献   

18.
Postsynthetic modification (PSM) of metal–organic frameworks (MOFs) provides access to functional materials and advanced porous solid engineering. Herein, we report the reversible PSM of a multivariate isoreticular MOF by applying dynamic furan-maleimide Diels–Alder (DA) chemistry. The key step involves incorporating a furan group into the MOF via “click” PSM, which can then undergo repeated cycles of modification and de-modification with maleimides. The structural integrity, crystallinity, and porosity of the furan-appended MOF remained intact even after three consecutive PSM/de-modification cycles using three different functionalized maleimides.  相似文献   

19.
Earth-abundant transition-metal-based catalysts for electrochemical water splitting are critical for sustainable energy schemes. In this work, we use a rational design method for the synthesis of ultrasmall and highly dispersed bimetallic CoMo carbide/oxide particles deposited on graphene oxide. Thermal conversion of the molecular precursors [H3PMo12O40], Co(OAc)2 ⋅ 4 H2O and melamine in the presence of graphene oxide gives the mixed carbide/oxide (Co6Mo6C2/Co2Mo3O8) nanoparticle composite deposited on highly dispersed, N,P-doped carbon. The resulting composite shows outstanding electrocatalytic water-splitting activity for both the oxygen evolution and hydrogen evolution reaction, and superior performance to reference samples including commercial 20 % Pt/C & IrO2. Electrochemical and other materials analyses indicate that Co6Mo6C2 is the main active phase in the composite, and the N,P-doping of the carbon matrix increases the catalytic activity. The facile design could in principle be extended to multiple bimetallic catalyst classes by tuning of the molecular metal oxide precursor.  相似文献   

20.
The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers. We report the synthesis of the MOF NU-1700 , assembled from U4+-paddlewheel nodes and catecholate-based linkers. We propose this highly unusual structure, which contains two U4+ ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X-ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号