首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A recent mathematical analysis by Michel Petijean aimed at solving the Barron/Mislow controversy concerning the chirality or otherwise of a non-translating spinning cone concluded that both are right: the controversy is a matter of an arbitrary choice of a conversion factor. This reassessment highlights the different physicochemical properties of a stationary spinning cone and a chiral molecule and concludes that Petitjean's analysis is misleading.  相似文献   

2.
Is There a “Most Chiral Tetrahedron”?   总被引:1,自引:0,他引:1  
A degree of chirality is a function that purports to measure the amount of chirality of an object: it is equal for enantiomers, vanishes only for achiral or degenerate objects and is similarity invariant, dimensionless and normalisable to the interval [0,1]. For a tetrahedron of non-zero three-dimensional volume, achirality is synonymous with the presence of a mirror plane containing one edge and bisecting its opposite, and hence it is easy to design degree-of-chirality functions based on edge length that incorporate all constraints. It is shown that such functions can have largest maxima at widely different points in the tetrahedral shape space, and by incorporation of appropriate factors, the maxima can be pushed to any point in the space. Thus the phrase "most chiral tetrahedron" has no general meaning: any chiral tetrahedron is the most chiral for some legitimate choice of degree of chirality.  相似文献   

3.
The importance of and the difference between molecular versus structural core chirality of substances that form nanomaterials, and their ability to transmit and amplify their chirality to and within a surrounding condensed medium is yet to be exactly understood. Here we demonstrate that neat as well as disodium cromoglycate (DSCG) surface-modified cellulose nanocrystals (CNCs) with both molecular and morphological core chirality can induce homochirality in racemic nematic lyotropic chromonic liquid crystal (rac-N-LCLC) tactoids. In comparison to the parent chiral organic building blocks, D-glucose, endowed only with molecular chirality, both CNCs showed a superior chirality transfer ability. Here, particularly the structurally compatible DSCG-modified CNCs prove to be highly effective since the surface DSCG moieties can insert into the DSCG stacks that constitute the racemic tactoids. Overall, this presents a highly efficient pathway for chiral induction in an aqueous medium and thus for understanding the origins of biological homochirality in a suitable experimental system.  相似文献   

4.
《Chemical physics letters》1986,123(5):423-427
Systems that exhibit distinguishable enantiomers under space inversion are not necessarily chiral. A new definition of chirality is proposed that enables true and false chirality to be distinguished. This definition is reinforced by a consideration of parity violation, which lifts only the degeneracy of the space-inverted enantiomers of truly chiral systems.  相似文献   

5.
6.
Here we describe the story behind the link between molecular chirality and macroscopic phenomena, the latter being a probe for the direct assignment of absolute configuration of chiral molecules. First, a brief tour of the history of molecular stereochemistry, starting with the classic experiment reported by Pasteur in 1848 on the separation of enantiomorphous crystals of a salt of tartaric acid, and his conclusion that the molecules of life are chiral of single-handedness. With time, this study raised, inter alia, two fundamental questions: the absolute configuration of chiral molecules and how a molecule of given configuration shapes the enantiomorphous morphology of its crystal. As for the first question, following the beginning of crystal structure determination by X-ray diffraction in 1912, it took almost 40 years before Bijvoet assigned molecular chirality through the esoteric method involving anomalous X-ray scattering. We have been able to address and link both questions through ‘everyday concepts of left and right’ (in the words of Jack Dunitz) by the use of ‘tailor-made’ auxiliaries. By such means, it proved possible to reveal, through morphology, etch patterns, epitaxy and symmetry reduction of both chiral and, paradoxically, centrosymmetric crystals, the basic chiral symmetry of the molecules of life, the α-amino acids and sugars.  相似文献   

7.
Phase-modulated ellipsometry of the J-aggregates of the title porphyrin shows that the material gives a true CD signal. This confirms that there is a real chiral transfer by mechanical forces, mediated by shear gradient flows, from the macroscopic to the electronic transition level. Dislocations in the structure of the aggregate could justify the formation of chirality at the level of the electronic transitions once the mesophases can be sculptured by hydrodynamic gradient flows.  相似文献   

8.
Chiral molecules, which may contain one or more different type(s) of stereocentres, such as central, axial, planar, and helical chiralities, etc., are indispensable in chemistry, pharmaceutical industry, and life science. Despite many advances for the preparation of chiral molecules usually with a single type of chirality have been realized, simultaneous construction of different types of chiralities is still a significant challenge. Here, we wish to report a protocol for preparation of chiral allenes with both central and axial chiralities via a catalytic asymmetric allenylation of different biologically or synthetically useful fluorinated or non‐fluorinated nucleophiles with readily available racemic allenes by using a single chiral ligand. An echoing between the central chirality and axial chirality for the enantioselectivity was observed. This strategy provides a general and practical approach to functionalized optically active allenes bearing both central and axial chiralities with an excellent enantioselectivity under mild conditions.  相似文献   

9.
Polyolefins that bear a chiral side chain (typically an isobutyl group) experience a so-called macromolecular amplification of chirality: the chiral side-chain induces a slight preference for either tg or tg- main chain conformation. This slight conformational bias is amplified cooperatively along the chain, and results in preferred chirality of the main chain helical conformations. As a result, these polymers display a liquid-crystal (LC) phase both in solution and, in the melt as a transient phase on the way to crystallization. The existence of two processes (melt-LC and LC-crystal transitions) results in unconventional behaviors that were first analyzed by Pino and collaborators back in 1975. These polymers also offer a means to test the structural consequences of recently introduced crystallization schemes. These schemes postulate the formation of a transient liquid-crystal phase as a general scheme for polymer crystallization.  相似文献   

10.
The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host–guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host–guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non-rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.  相似文献   

11.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

12.
Supramolecular self-assembly stands for the spontaneous aggregation of small organic compounds or polymers into ordered structures at any scale. When being induced by inherent molecular chiral centers or ambient asymmetric factors, asymmetric spatial arrangement between building units shall occur, which is defined as supramolecular chirality. Except for molecular design, utilizing external stimulus factors to tune supramolecular chirality is a promising approach. In this Concept article, we particularly discuss the important role of solvents in manipulating the chirality of self-assembled systems. The impact of solvents on the chirality is generally based on three properties of solvents, i.e., chirality, polarity, and active coassembly with building blocks. Molecular self-assembly in chiral solvents could undergo the chirality transfer, exhibiting a chiral induction effect. Solvent polarity often determines intermolecular orientation. As a consequence, those building blocks with both polar and apolar segments might change their chirality depending on the solvent polarity. We elaborate the active participation of solvent molecules into ordered structures together with building blocks, where solvents and building blocks exhibit a coassembly manner. By specific treatments such as heating and cooling, solvents could be released or re-entrapped, allowing a smart control over supramolecular chirality. The solvent effect in manipulating two-dimensional chiral self-assemblies is then discussed. The perspective and future development in this research field are presented at last.  相似文献   

13.
Enantiopure bimetallic systems containing three different elements of chirality, namely a main-group-based chiral center (sulfur), a transition-metal chiral center (rhodium or iridium), and a planar chiral element (ferrocene or ruthenocene), have been prepared by a sequence of diastereoselective reactions. The chirality of the chiral sulfur center attached to C-5 of a 1,2,3-triazolylidene mesoionic carbene (MIC) ligand coordinated to a metal (Ir, Rh) was transferred through the formation of bimetallic complexes having a chiral-at-metal center and a planar chiral metallocene by C−H activation of the sandwich moiety (M=Fe, Ru). The sense of the planar chirality formed in this sequence of reactions depended on the nature of the ligands at the metal center of the starting complex. The configurations of these species were assigned on the basis of a combination of X-ray diffraction and CD measurements. An electrochemical study of these bimetallic complexes in coordinating solvents showed an equilibrium between the cationic complexes and the neutral species. The effect of the half-sandwich moiety on the oxidation potentials of the system is remarkable, producing notable cathodic displacements. DFT calculations support these findings.  相似文献   

14.
Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using Land D-gelators in xerogels respectively, and...  相似文献   

15.
Amplification of chirality has been reported in polymeric systems. It has also been shown that related effects can occur in polymer‐like dynamic supramolecular aggregates, if a subtle balance between noncovalent interactions allows the coupling between a chiral information and a cooperative aggregation process. In this context, we report a strong majority‐rules effect in the formation of chiral dynamic nanotubes from chiral bisurea monomers. Furthermore, similar helical nanotubes (with the same circular dichroism signature) can be obtained from racemic monomers in a chiral solvent. Competition experiments reveal the relative strength of the helical bias induced by the chiral monomer or by the chiral solvent. The nanotube handedness is imposed by the monomer chirality, whatever the solvent chirality. However, the chirality of the solvent has a significant effect on the degree of chiral induction.  相似文献   

16.
The absolute configuration and the conformation of 9,10-trans-disubstituted 9,10-dihydrophenanthrenes, known chiral metabolites of phenanthrene-9,10-oxide, have been determined by circular dichroism. The absolute configuration assignment is based on the sign of the long-wavelength Cotton effect (A-band), which is conformation invariant and originates from benzylic chirality. This provides a new interpretation of the Mislow biphenyl-helicity rule for the case of the 9,10-dihydrophenanthrene chromophore. The sign of the B-band Cotton effect reflects the conformation of the biphenyl chromophore in 9,10-dihydrophenanthrenes. It is shown that the origin of chiroptical properties of 9,10-dihydrophenanthrenes is closely related to those of 5,6-trans-disubstituted 1,3-cyclohexadienes.  相似文献   

17.
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central‐to‐axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling.  相似文献   

18.
To understand the behavior of chiral nanostructures, it is of critical importance to study how achiral molecules regulate the chirality of such nanostructures and what the main driving forces for the regulation processes are. In this work, the supramolecular chirality of helical nanofibers consisting of phenylalanine‐based enantiomers is inverted by achiral bis(pyridinyl) derivatives through co‐assembly. This inversion is mainly mediated by intermolecular hydrogen bonding interactions between the achiral additives and the chiral molecules, which may induce stereoselective interactions and different reorientations for the assembled molecules, as confirmed by calculations. This work not only exemplifies a feasible method to invert the helicity of chiral nanostructures by the addition of achiral molecules, but also provides a method to explore their functions in environments where chiral and achiral molecules are in close proximity.  相似文献   

19.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

20.
The helical structure of the chiral nematic phases (cholesterics) obtained by doping nematic solvents with chiral non-racemic compounds is a macroscopic proof of the solute chirality. Oligonaphthalene (tetra-, hexa-, octa-) derivatives linked at the 1,4-positions have been used as chiral dopants: When the chirality axes are configurationally homogeneous (that is, all-S), the molecular structures correspond to right-handed helices. Yet, we have found series of derivatives with the surprising property that the handedness of the induced cholesteric phase alternates from positive to negative and to positive again, on passing from tetra- to hexa- and to octanaphthalene. A comparison with oligonapthalene derivatives, which do not exhibit this twisting ability, points to the importance of the substitution pattern. Both the possibility of inducing oppositely-handed cholesteric phases by homochiral helices of different length, and the role played of substituents, are confirmed by calculations performed with the surface chirality model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号