首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel method of needle trap device packed with titanium‐based metal‐organic framework for the extraction of phenolic derivatives in air followed by gas chromatography‐flame ionization detector analysis. The synthetized adsorbent was packed inside a 22‐gauge spinal needle. This method was first tested at laboratory scale, and then was used for field sampling of phenolic derivatives in air. A glass chamber placed on a heater at 60°C was used to provide different concentrations of phenolic derivatives. The desorption conditions and breakthrough volume were optimized using response surface methodology. The limit of detection and limit of quantitation of the proposed method were estimated to be in the range of 0.001–0.12 and 0.003–0.62 ng/mL, respectively, indicating a high sensitivity for the suggested sampler. Storing the packed needle trap device in a refrigerator at 4?C for 60 days did not dramatically affect the storage stability. Our findings indicated that there was a high correlation coefficient (R= 0.99) between the measurement results of this method and the NIOSH recommended method (XAD‐7 sorbent tube). Therefore, it can be concluded that the needle trap device packed with titanium‐based metal‐organic framework can be used as a efficient method for extraction of phenolic derivatives in air.  相似文献   

2.
The application of metal–organic frameworks (MOFs) as SERS-active platforms in multiplex volatile organic compounds (VOCs) detection is still unexplored. Herein, we demonstrate that MIL-100 (Fe) serves as an ideal SERS substrate for the detection of VOCs. The limit of detection (LOD) of MIL-100(Fe) for toluene sensing can reach 2.5 ppm, and can be even further decreased to 0.48 ppb level when “hot spots” in between Au nanoparticles are employed onto MIL-100 (Fe) substrate, resulting in an enhancement factor of 1010. Additionally, we show that MIL-100(Fe) substrate has a unique “sensor array” property allowing multiplex VOCs detection, with great modifiability and expandability by doping with foreign metal elements. Finally, the MIL-100(Fe) platform is utilized to simultaneously detect the different gaseous indicators of lung cancer with a ppm detection limit, demonstrating its high potential for early diagnosis of lung cancer in vivo.  相似文献   

3.
4.
A needle trap device (NTD) packed with silica composite of multi-walled carbon nanotubes (MWCNTs) prepared based on sol–gel technique was utilized for sampling and analysis of volatile organohalogen compounds (HVOCs) in air. The performance of the NTD packed with MWCNTs/silica composite as sorbent was examined in a variety of sampling conditions and was compared with NTDs packed with PDMS as well as SPME with Carboxen/PDMS-coated fibers. The limit of detection of NTDs for the GC/MS detection system was 0.01–0.05 ng mL−1 and the limit of quantitation was 0.04–0.18 ng mL−1. The RSD were 1.1–7.8% for intra-NTD comparison intended for repeatability of technique. The NTD-MWCNTs/silica composite showed better analytical performances compared to the NTD-PDMS composite and had the same analytical performances when compared to the SPME-Carboxen/PDMS fibers. The results show that NTD-MWCNTs-GC/MS is a powerful technique for active sampling of occupational/environmental pollutants in air.  相似文献   

5.
For air/headspace analysis, needle trap devices (NTDs) are applicable for sampling a wide range of volatiles such as benzene, alkanes, and semi-volatile particulate bound compounds such as pyrene. This paper describes a new NTD that is simpler to produce and improves performance relative to previous NTD designs. A NTD utilizing a side-hole needle used a modified tip, which removed the need to use epoxy glue to hold sorbent particles inside the NTD. This design also improved the seal between the NTD and narrow neck liner of the GC injector; therefore, improving the desorption efficiency. A new packing method has been developed and evaluated using solvent to pack the device, and is compared to NTDs prepared using the previous vacuum aspiration method. The slurry packing method reduced preparation time and improved reproducibility between NTDs. To evaluate the NTDs, automated headspace extraction was completed using benzene, toluene, ethylbenzene, p-xylene (BTEX), anthracene, and pyrene (PAH). NTD geometries evaluated include: blunt tip with side-hole needle, tapered tip with side-hole needle, slider tip with side-hole, dome tapered tip with side-hole and blunt with no side-hole needle (expanded desorptive flow). Results demonstrate that the tapered and slider tip NTDs performed with improved desorption efficiency.  相似文献   

6.
《中国化学快报》2021,32(11):3505-3508
The conversion of CO2 under mild condition is of great importance because these reactions involving CO2 can not only produce value-added chemicals from abundant and inexpensive CO2 feedstock but also close the carbon cycle. However, the chemical inertness of CO2 requires the development of high-performance catalysts. Herein, Ag nanoparticles/MIL-100(Fe) composites were synthesized by simple impregnation-reduction method and employed as catalysts for the photothermal carboxylation of terminal alkynes with CO2. MIL-100(Fe) could stabilize Ag nanoparticles and prevent them from aggregation during catalytic process. Taking the advantages of photothermal effects and catalytic activities of both Ag nanoparticles and MIL-100(Fe), various aromatic alkynes could be converted to corresponding carboxylic acid products (86%–92% yields) with 1 atm CO2 at room temperature under visible light irradiation when using Ag nanoparticles/MIL-100(Fe) as photothermal catalysts. The catalysts also showed good recyclability with almost no loss of catalytic activity for three consecutive runs. More importantly, the catalytic performance of Ag nanoparticles/MIL-100(Fe) under visible light irradiation at room temperature was comparable to that upon heating, showing that the light source could replace conventional heating method to drive the reaction. This work provided a promising strategy of utilizing solar energy for achieving efficient CO2 conversion to value-added chemicals under mild condition.  相似文献   

7.
A new biocatalyst MP8@MIL-101(Cr/Fe) was prepared by immobilization of a heme octapeptide, Microperoxidase 8 (MP8) within a mixed metal MOF, MIL-101(Cr/Fe). Both MIL-101(Cr/Fe) and MP8@MIL-101(Cr/Fe) were characterized by PXRD, FTIR spectroscopy and TGA. The catalytic activity of MP8@MIL-101(Cr/Fe) for the oxidation of styrene by H2O2 and tBuOOH was then examined under various reaction conditions (nature of the co-solvent and of the oxidant, concentration of the oxidant and of the substrate, time, pH) and compared to that of MP8 alone. Under the best conditions used, MP8@MIL-101(Cr/Fe) was then shown to catalyze the oxidation of styrene about 3 times more efficiently than MP8 alone with approximately 50 % selectivity for styrene oxide.  相似文献   

8.
Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electrochemistry(MIPEC) strategy was developed to accelerate the synthesis process of MOFs with micro-plasma acting as cathode.Treating the HKUST-1 precursor solution with micro-plasma cathode could not only transfer the electrons into the solution leading to the deprotonation effect,but also generate radical species to trigger and accelerate the nucleation and growth of MOFs at the plasmaliquid interface.Thus,uniform and nanosize MOFs could be prepared within minutes.The obtained MOFs show similar excellent uranium adsorption properties compared with those obtained by other method,with a highly adsorption capability of uranium with 550 mg/g in minutes.The novel MIPEC strategy developed in this work provides an alternative for controllable synthesis of MOFs,and especially has potential application in accelerating traditional organic synthesis.  相似文献   

9.
In this study, a sorbent was immobilized inside a needle resulting in the development of a needle trap (NT) device. This device was applied to extract organic components from gaseous samples and to introduce an enriched mixture into a conventional gas chromatography (GC) injector. Construction of this simple and integrated sampling/extraction/sample introduction device was optimized by considering different ways to immobilize a sorbent in the needle, packing single and multiple-layer sorbent beds, and applying different desorption strategies into the GC injector. A carrier gas system was modified to minimize the carryover for the needle trap with a sealed tip (NT-1), and a narrow-neckliner was used for the blunt-tip needle trap (NT-2). Breakthrough in the device was investigated by connecting two NT-2 devices in series. The needle trap performed very well as an exhaustive spot sampler, as well as in a time-weighted average (TWA) operation. The linear velocity of the mobile phase has no influence on the sampling rate of the needle trap. Validation results against the standard NIOSH 1501 method using charcoal tubes for indoor air surveys demonstrated good accuracy for the NT approach. The reproducibility of the NT-2 was about 1% for benzene. The detection limits for FID detection and for 25 ml gas sample were 0.23 ng/l, 2.10 ng/l and 1.12 ng/l for benzene, ethylbenzene and o-xylene, respectively.  相似文献   

10.
Air in a room infested by Cimex lectularius L. (Hemiptera: Cimicidae) was sampled simultaneously by three different sampling devices including solid phase microextraction (SPME) fiber coatings, thin film microextraction (TFME) devices, and needle trap devices (NTDs) and then analyzed by gas chromatography–mass spectrometry (GC–MS). The main focus of this study was to fully characterize indoor air by identifying compounds extracted by three different microextraction formats and, therefore, perform both the device comparison and more complete characterization of C. lectularius pheromone. The NTD technique was capable of extracting both (E)-2-hexenal and (E)-2-octenal, which were previously identified as alarm pheromones of bedbugs, and superior NTD recoveries for these two components allowed reliable identification based on mass spectral library searching and linear temperature programmed retention index (LTPRI) technique. While the use of DVB/CAR/PDMS SPME fiber coatings provided complementary sample fingerprinting and profiling results, TFME sampling devices provided discriminative extraction coverage toward highly volatile analytes. In addition to two alarm pheromones, relative abundances of all other analytes were recorded for all three devices and aligned across all examined samples, namely, highly infested area, less infested area, and control samples which were characterized by different bedbug populations. The results presented in the current study illustrate comprehensive characterization of infested indoor air samples through the use of three different non-invasive SPME formats and identification of novel components comprising C. lectularius pheromone, therefore, promising future alternatives for use of potential synthetic pheromones for detection of infestations.  相似文献   

11.
Metal‐organic frameworks (MOFs) nanoparticles in combination with a nonionic surfactant (Pluronic L‐121) are used to stabilize dicyclopentadiene (DCPD)‐in‐water high internal phase emulsions (HIPEs). The resulting HIPEs containing the MIL‐100(Fe) nanoparticles (MIL: Materials of Institut Lavoisier) at the interface between the oil‐ and the water‐phases are then cured, and 100 μm thick, fully open, hierarchically porous hybrid membranes are obtained. The properties of the MIL‐100(Fe)@pDCPD polyHIPE membranes are characterized and it is found that up to 14 wt% of the MIL‐100(Fe) nanoparticles are incorporated in the hybrid material resulting in an increase of the microporosity up to 130 m2 g−1. Hybrid membranes show an appealing catalytic activity in Friedel–Crafts alkylation in a batch mode as well as in a flow‐through mode, thereby demonstrating the preserved accessibility of Lewis acidic sites in the MOF nanostructures.

  相似文献   


12.
朱鹏静  陶勇  章俊辉  字敏  袁黎明 《色谱》2016,34(12):1219-1227
金属有机骨架(MOFs)材料因具有丰富的拓扑结构、高比表面积、良好的稳定性、持久的孔结构以及可修饰的孔道表面等特点,在对映选择性催化和手性分离方面备受关注。该文通过水热法合成了3种具有手性的MOFs晶体,分别为Co2(D-cam)2(TMDPy)(简称为MOF 1)、[Cd(D-cam)(tmdpy)]·2H2O(简称为MOF 2)和[Co0.5Zn0.5(L-Tyr)]n(L-tyrCo/Zn)(简称为MOF 3),并把它们用作固定相分别制成MOFs手性柱进行开管毛细管电色谱(OT-CEC)研究。在磷酸二氢钠-乙腈的流动相体系下,考察了3根MOFs手性柱对手性化合物的拆分性能。实验结果表明,这3种MOFs手性毛细管柱对部分外消旋体具有较好的拆分效果。目前将手性MOFs作为毛细管电色谱手性分离的研究正处在起步阶段并且具有良好的应用前景。  相似文献   

13.
Shape-memory polymers are a class of materials that show dual or multi-shape competence. Here a solvent casting method was used to prepare composite films from Cu-BTC crystals in poly (l-lactide) (PLLA) to induce crystallization leading to a marked shape memory effect (SME). Extensive physico-chemical characterizations including solid-state NMR indicated that Cu-BTC triggered the crystallization of PLLA for ensuring the entropy needed for the shape memory behavior. The diffusion of polymeric chains inside pores of activated Cu-BTCs ensured interactions which increases the crystallinity as both simulation and experimental results show. Moreover, the segregation of Cu-BTC crystallites to small copper oxide particles due to the activation increases the volume of the crystalline region observed by microscopic images. We compared the identical features of composite prepared in the same method in where small molecule was encapsulated inside Cu-BTC with PLLA/5 wt% Cu-BTC; we were able to show that having the sharp transition of elastic to rubbery state in the vicinity of cold crystallization temperature in PLLA/5 wt% Cu-BTC provides Cu-BTC crystallites to act as netpoints. Moreover, the reinforcement accompanied by increased toughness demonstrates the combination of improved mechanical properties as well as SME of polymers which rarely have attained.  相似文献   

14.
郑笑笑  齐思慧  曹彦宁  沈丽娟  区泽棠  江莉龙 《催化学报》2021,42(2):279-287,后插18-后插20
硫化氢(H2S)广泛存在于以煤、石油和天然气等为原料的化工生产过程中,不仅腐蚀管道和设备,而且还会对健康和环境造成危害.因此,高效脱除H2S已成为工业废气减排的重点.在各种方法中,H2S选择性氧化技术(H2S+(1/2)O2→(1/n)Sn+H2O)由于具有设备需求低、反应不受热力学平衡限制、理论转化率可达100%等优点展现出了巨大的应用前景.实现这一过程的关键在于发展高效稳定的催化剂.作为一类新兴的多孔材料,金属-有机骨架材料(MOFs)由于其独特的结构和性质吸引了广泛的研究兴趣.与传统的脱硫材料相比,MOFs的优势主要体现在:1)高度分散的金属原子可作为催化活性中心;2)超高比表面积和规则的孔结构有利于反应物与活性位点之间的接触;3)结构可调变性高,通过在合成过程中有目的地引入配体或调控剂可产生额外的活性位点,满足特定催化的需求.基于以上特点可知,MOFs是一类有潜力的催化剂,但目前将其应用于H2S选择性氧化领域的研究尚处于起步阶段.本文以典型的铁基MOFs MIL-53(Fe)为研究对象,在制备MIL-53(Fe)过程中添加乙酸(HAc)作为调控剂,通过控制HAc的量,得到一系列具有不同形貌的MIL-53(Fe)-xH样品,并将其应用于H2S选择性氧化反应.SEM结果表明,在MIL-53(Fe)的合成过程中引入乙酸可以显著影响样品的形貌和尺寸.活化前后样品的XRD结果表明,HAc具有与对苯二甲酸(H2BDC)相似羧基基团,二者均可与Fe–O团簇配位.此外,TG-DSC结果证实,随着HAc加入量的提高,与Fe^3+形成配位的HAc/H2BDC比值随之增加.FT-IR和Raman结果进一步证明HAc成功地配位到MIL-53(Fe)的框架中,并且参与配位的HAc可通过真空活化移除从而暴露出Fe^3+不饱和位点.H2S选择性氧化测试表明,MIL-53(Fe)-xH的脱硫活性随着HAc含量的提高先增加然后降低,其中MIL-53(Fe)-5H活性最优.此外,MIL-53(Fe)-5H催化剂在连续运行55 h后仍能保持100%H2S转化率和86%硫选择性,性能远优于传统的Fe2O3催化剂.吡啶原位红外光谱结果表明,HAc的引入可以产生额外的Lewis酸性位点(LAS),LAS含量的不同是造成催化剂活性差异的主要原因.  相似文献   

15.
Transition metal-substituted polyoxometalates (POMs) were filled into a metal–organic framework (MOF) to construct a series of POM@MOF composites (PMo12O40@MIL-101, PMo11VO40@MIL-101, PMo10V2O40@MIL-101). The composite materials possess ultra-high adsorption ability, especially for PMo10V2O40@MIL-101, with an adsorption capacity of 912.5 mg·g−1 for cationic antibiotic tetracycline in wastewater, much higher than that of isolated MIL-101(Fe) and the commonly used adsorption materials, such as activated carbon and graphene oxide. In particular, they can be used as efficient photocatalysts for the photodegradation of antibiotics under visible light irradiation. The complete photodegradation of the adsorbed species can induce the facile reusability of these composites for multiple cycles. This work opens an avenue to introduce POMs into an MOF matrix for the simultaneous adsorption and photodegradation of antibiotics.  相似文献   

16.
In this paper solid phase microextraction (SPME) and needle trap device (NTD) as two in-progress air monitoring techniques was applied with silylated composite of carbon nanotubes for sampling and analysis of perchloroethylene in air. Application of SPME and NTD with proposed nano-structured sorbent was investigated under different laboratory and experimental parameters and compared to the SPME and NTD with CAR/PDMS. Finally the two samplers contained nano-sorbent used as a field sampler for sampling and analysis of perchloroethylene in dry cleaning. Results revealed that silica composite form of CNTs showed better performance for adsorbent of perchloroethylene. SPME and NTD with proposed sorbent was demonstrated better responses in lower levels of temperature and relative humidity. For 5 days from sampling the relative responses were more than 97% and 94% for NTD and SPME, respectively. LOD were 0.023 and 0.014 ng mL−1 for SPME coated CNTs/SC and CAR/PDMS, and 0.014 and 0.011 ng mL−1 for NTD packed with CNTs/SC and CAR/PDMS, respectively. And for consecutive analysis RSD were 3.9–6.7% in laboratory and 4.43–6.4% in the field. In the field study, NTD was successfully applied for determining of the PCE in dry cleaning. The results show that the NTD packed with nanomaterial is a reliable and effective approach for the sampling and analysis of volatile compounds in air.  相似文献   

17.
In this study, we present a newly designed see-through type hollow cathode glow discharge (St-HCGD) cell developed for the analysis of volatile organic materials in an ion trap mass spectrometer. The cell was interfaced with a homemade ion trap mass spectrometer by adopting skimmer and sampler in an optimized dimensions based on the computer simulation done by SIMION software. The St-HCGD cell has a relatively small size (4×4×7 cm) with the diameter of the inner tube of 0.25′′. The anode and cathode were made of stainless steel-304 and helium was used as a buffer gas for discharge to enhance the Penning ionization process rather than sputtering process. Mass spectra of volatile organic samples such as benzene, toluene, cyclohexane were obtained by using the St-HCGD-ITMS.  相似文献   

18.
In this study, an alternative method for synthesizing magnetic cobalt adeninate metal–organic frameworks was developed, and the synthesized materials were examined for their potential application for separating and enriching benzodiazepines from complex samples. Benzodiazepines, widely used as hypnotics, muscle relaxants, sedatives, and anxiolytics, are a class of drugs that require accurate detection and monitoring. Results showed that Fe3O4 nanoparticles could be well anchored onto the external surface of cobalt adeninate metal–organic frameworks by using amino‐silane as a linkage. Their adsorption of benzodiazepines was mainly promoted by intermolecular hydrogen binding, π–π interactions and electrostatic attraction. Their potential application was evaluated by extraction of benzodiazepines in urine and wastewater samples prior to liquid chromatography with mass spectrometry. Under optimum conditions, the calibration curves were linear with a correlation coefficient of ≥0.9928 in the concentration range of 10–5000 ng/L for lorazepam and 5–5000 ng/L for estazolam, chlordiazepoxide, alprazolam, midazolam and triazolam. The limits of detection were in the range of 0.71–2.49 ng/L. The percent of extraction recoveries were 80.2–94.5% for urine and 84.1–94.4% for wastewater, respectively. Results suggested that magnetic cobalt adeninate metal–organic frameworks could potentially be a promising material for enriching benzodiazepines from urine and wastewater with high accuracy and precision.  相似文献   

19.
Monolithic porous copolymers with 3D structure were prepared via CO2‐in‐water high internal phase emulsions template by graft copolymerization of sodium methacrylate (MAANa) on to methyl cellulose (MC) backbone. The yielded copolymer monoliths are characterized by Fourier transform infrared spectra, scanning electron microscopy (SEM), and mechanical instrument, the swelling degree of MC‐g‐PMAANa monoliths with different crosslinker in diverse pH were investigated. The adsorption performance of monolith to Cu(II) were conducted to explore its adsorption capacity to heavy metal ions from the wastewater. Then, a strategy of in situ growth of metal‐organic frameworks (MOFs) on MC‐g‐PMAANa that adsorbed with metal ions was proposed first. The X‐ray powder diffraction, SEM, and Brunauer‐Emmett‐Teller (BET) surface area result of MC‐g‐PMAANa/MOFs composites indicated that the MOFs nanoparticles were grown uniformly on the monolith wall without destroying its original 3D porous structure. Compared with MOFs nanoparticle, MC‐g‐PMAANa/MOFs composites have advantages of easy operation and handle, which more conform to practical application. Furthermore, the antibacterial activity of MC‐g‐PMAANa/MOFs was evaluated by disk agar diffusion and optical density methods. In addition, MC‐g‐PMAANa/Cu‐BTC composite was applied to dye adsorption, which has proved the underlying application of such composites in dye removal.  相似文献   

20.
Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B, C, N, O, Si) and linked by robust covalent bonds to endow such material with desirable properties, i.e., inherent porosity, well-defined pore aperture, ordered channel structure, large surface area, high stability, and multi-dimension. As expected, the above-mentioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation, catalysis, optoelectronics, sensing, small molecules adsorption, and drug delivery. In this review, we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号