首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-performance and low-cost bifunctional catalysts are crucial to energy conversion and storage devices. Herein, a novel oxygen electrode catalyst with high oxygen evolution reaction and oxygen reduction reaction (OER/ORR) performance is reported based on bimetal FeNi nanoparticles anchored on N-doped graphene-like carbon (FeNi/N−C). The complete 2D ultrathin carbon nanosheet is induced by etching and stripping of molten sodium chloride and its ions in the carbonization process at suitable temperature. The obtained FeNi/N−C catalyst exhibits rapid reaction kinetics for OER, efficient four electron transfer for ORR, and outstanding bifunctional performance with reversible oxygen electrode index of 0.87 V for OER/ORR. Zn-air batteries with a high open-circuit voltage of 1.46 V and a stable discharge voltage of 1.23 V are assembled using liquid electrolytes, zinc sheet as Zn-electrode and FeNi/N−C coating on carbon cloth as air-electrode. The specific capacity is as high as 816 mAh g−1 and there is extremely little decay after charge-discharge cycle time of 275 h for the FeNi/N−C as oxygen electrode catalyst in Zn-air battery, which are much better than that assembled with Pt/C−RuO2 catalyst.  相似文献   

2.
Design and synthesis of low-cost and efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in Zn-air batteries are essential and challenging. We report a facile method to synthesize heterostructure carbon consisting of graphitic and amorphous carbon derived from the agricultural waste of red bean pods. The heterostructure carbon possesses a large surface area of 625.5 m2 g−1, showing ORR onset potential of 0.89 V vs. RHE and OER overpotential of 470 mV at 5 mA cm−2. Introducing hollow FeCo nanoparticles and nitrogen dopant improves the bifunctional catalytic activity of the carbon, delivering ORR onset potential of 0.93 V vs. RHE and OER overpotential of 360 mV. Electron energy-loss spectroscopy (EELS) O K-edge map suggests the presence of localized oxygen on the FeCo nanoparticles, suggesting the oxidation of the nanoparticles. Zn-air battery with these carbon-based catalysts exhibits a peak power density as high as 116.2 mW cm−2 and stable cycling performance over 210 discharge/charge cycles. This work contributes to the advancement of bifunctional oxygen electrocatalysts while converting agricultural waste into value-added material.  相似文献   

3.
对氧气还原(ORR)和氧气析出(OER)反应都具有催化活性的双功能催化剂在金属-空气电池中起着关键作用.本文通过溶剂热反应,一步原位合成了磷掺杂碳纳米管(P-CNT).旋转环盘电极测试表明磷掺杂能够明显提高碳纳米管的催化活性,P-CNT在碱性电解质中对ORR和OER都具有优异的催化活性.P-CNT对ORR的催化还原为近4电子反应,可与商业催化剂Pt/C(20 wt%)相比;而其对OER的催化活性则高于Pt/C(20 wt%).此外,P-CNT的长期稳定性优于Pt/C(20 wt%).P-CNT对ORR和OER的高催化活性和稳定性主要归因于磷对碳的掺杂以及磷与碳间强的化学键合.  相似文献   

4.
The oxygen reduction reaction (ORR) is a vitally important process in fuel cells. The development of high-performance and low-cost ORR electrocatalysts with outstanding stability is essential for the commercialization of the electrochemical energy technology. Herein, we report a facile synthesis of cobalt (Co) and nitrogen (N) co-doped carbon nanotube@porous carbon (Co/N/CNT@PC-800) electrocatalyst through a one-step pyrolysis of waste paper, dicyandiamide, and cobalt(II) acetylacetonate. The surface of the hierarchical porous carbon supported a large number of carbon nanotubes (CNTs), which were derived from dicyandiamide through the catalysis of Co. The addition of Co resulted in the formation of a hierarchical micro/mesoporous structure, which was beneficial for the exposure of active sites and rapid transportation of ORR-relevant species (O2, H+, OH?, and H2O). The doped N and Co formed more active sites to enhance the ORR activity of the electrocatalyst. The Co/N/CNT@PC-800 material exhibited optimal ORR performance with an onset potential of 0.005 V vs. Ag/AgCl and a half-wave potential of –0.173 V vs. Ag/AgCl. Meanwhile, the electrocatalyst showed an excellent methanol tolerance and a long-term operational durability than that of Pt/C, as well as a quasi-four-electron reaction pathway. The low-cost and simple synthesis approach makes the Co/N/CNT@PC-800 a prospective electrocatalyst for the ORR. Furthermore, this work provides an alternative approach for exploring the use of biomass-derived electrocatalysts for renewable energy applications.  相似文献   

5.
Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER) to achieve a current density (J) of 10 mA cm−2 and a high ORR potential of 0.84 V vs. RHE (EJ=−1, ORR) to reach −1 mA cm−2. Thus, the potential between EJ=10, OER and EJ=−1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85Se and CNFs. Furthermore, this Co0.85Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.  相似文献   

6.
采用软模板法制备了氮化钨-钨/掺氮有序介孔碳复合材料(WN-W/NOMC),作为一种高比表面积且价格低廉的阴极氧还原反应催化剂。通过适量添加尿素来改变复合材料中的氮含量,在掺氮量为7%(w/w)时,实验发现材料能够保持完整有序介孔结构,测试其比表面积高达835 m2·g-1,透射电子显微镜(TEM)测试结果显示其催化颗粒均匀地分散在氮掺杂有序介孔碳载体上。在O2饱和的0.1 mol·L-1 KOH溶液中测试了材料的氧还原催化性能(ORR),显示其起始电位为0.87 V(vs RHE),极限电流密度为4.49 mA·cm-2,氧还原反应的转移电子数为3.4,接近于20%(w/w)商业Pt/C的3.8,说明该材料表现出近似4电子的氧还原反应途径。研究结果表明,WN-W/NOMC的催化性能虽然稍弱于商业铂碳(0.99 V,5.1 mA·cm-2),但其具有远超铂碳的循环稳定性和耐甲醇毒化能力。  相似文献   

7.
在碳纸(CP)及涂覆了碳粉科琴黑(KB)或石墨烯纳米片(GNs)的碳纸上,原位电沉积了AuPt合金,制备成CP/AuPt、CP/KB/AuPt、CP/GNs/AuPt三种空气电极。对比研究发现,以石墨烯纳米片为载体的CP/GNs/AuPt空气电极上,AuPt合金载量高,颗粒分散均匀,粒径约为100 nm左右,Au和Pt的含量分别为78.84%(n/n)和21.16%(n/n)。在0.1 mol·L-1 KOH溶液中氧还原反应的起峰电势为0.93 V,催化活性和稳定性优于其他两种空气电极。分析认为,石墨烯纳米片具有高导电性、高比表面积以及较多的缺陷活性位点,有利于AuPt合金在其上均匀电沉积且沉积载量较高,同时GNs本身具有一定的催化活性,两者能够产生协同催化作用,提高了CP/GNs/AuPt电极的催化性能。  相似文献   

8.
在碳纸(CP)及涂覆了碳粉科琴黑(KB)或石墨烯纳米片(GNs)的碳纸上,原位电沉积了Au Pt合金,制备成CP/Au Pt、CP/KB/Au Pt、CP/GNs/Au Pt三种空气电极。对比研究发现,以石墨烯纳米片为载体的CP/GNs/Au Pt空气电极上,Au Pt合金载量高,颗粒分散均匀,粒径约为100 nm,Au和Pt的含量分别为78.84%(n/n)和21.16%(n/n)。在0.1 mol·L-1 KOH溶液中氧还原反应的起峰电势为0.93 V,催化活性和稳定性优于其他两种空气电极。分析认为,石墨烯纳米片具有高导电性、高比表面积以及较多的缺陷活性位点,有利于Au Pt合金在其上均匀电沉积且沉积载量较高,同时GNs本身具有一定的催化活性,两者能够产生协同催化作用,提高了CP/GNs/Au Pt电极的催化性能。  相似文献   

9.
Alloying high-cost Pt with transition metals has been considered as an effective route to synthesize the electrocatalysts with low Pt loading and excellent activity towards oxygen reduction reaction (ORR) under acid solution. The galvanic replacement method, as featured with efficiency and simplicity, is widely reported to produce Pt-based bimetallic alloys and thereby declare the significance of reductive transition metal precursor on the enhancement of ORR performance. Herein, mix-phased Cu−Cu2O precursor was applied to prepare carbon black supported highly dispersed PtCu alloy nanoparticles (PtCu/C). The proper Cu−Cu2O ratios can exactly facilitate the generation of small sized PtCu alloy nanoparticles with regulated bimetallic content. Meanwhile, the Cu2O phase is revealed to benefit the electron transfer from Pt to Cu and thus improve the intrinsic activity of Pt active sites. And the metallic Cu can favor the promotion of electrochemical active surface area. Consequently, the as-prepared PtCu/C behaves impressive ORR activity with half-wave potential of 0.88 V (vs. RHE) and mass activity of 0.49 A cm−2 mgPt−1 at 0.8 V, which is 9.8 times of commercial Pt/C catalysts. Our work will offer helpful advices for the development and regulation of novel Pt-based alloy materials towards diverse electrocatalysis.  相似文献   

10.
《化学:亚洲杂志》2017,12(14):1816-1823
Heteroatom‐doped carbon materials have been considered as potential substitutes for Pt‐based electrocatalysts for the oxygen reduction reaction (ORR) in alkaline fuel cells. Here we report the synthesis of oxygen‐containing nitrogen‐doped carbon (ONC) nanosheets through the carbonization of a mixture that contained glucose and dicyandiamide (DCDA). In situ formed graphitic carbon nitride (g‐C3N4) derived from DCDA provided a nitrogen‐rich template, thereby facilitating the formation of ONC nanosheets. The resultant ONC materials with high nitrogen content, high specific surface areas, and highly mesoporous total volume displayed excellent electrochemical performance, including a similar ORR onset potential, half‐potential, a higher diffusion‐limited current, and excellent tolerance to methanol than that of the commercial Pt/C catalyst, respectively. Moreover, the ONC‐850 nanosheet displayed high long‐term durability even after 1000 cycles as well as a high electron transfer number of 3.92 (4.0 for Pt/C). Additionally, this work provides deeper insight into these materials and a versatile strategy for the synthesis of cost‐effective 2D N‐doped carbon electrocatalysts.  相似文献   

11.
金属-空气电池具备诸多优势,譬如绿色环保、能量转化率高、启动快速、能量密度高、使用寿命和干态存储时间长等.与燃料电池相比,金属-空气电池结构简单,放电电压平稳,成本低,但依然存在一些制约发展的问题,如阴极催化剂.阴极催化剂在金属-空气电池中发挥催化氧还原反应(oxygen reduction reaction, ORR)和析氧反应(oxygen evolution reac-tion, OER)的关键作用.铂及其合金常用作 ORR的单功能催化剂,而钌和铱等是目前 OER催化效率最高的,但 ORR活性很低,因此需要开发出一种廉价而又具备双功能催化作用的催化剂.单异原子掺杂的碳基催化剂的研究集中在 ORR催化性能上,而多异原子共掺碳最近有研究表明具有双催化氧的性质,如氮磷共掺碳.在这些氮磷共掺的碳架中,氮磷共掺物起着 OER催化作用,掺氮物为 ORR催化的活性位点,而掺磷物起着强化作用.异原子掺杂负载的钴基催化剂(如掺氮还原氧化石墨烯载 Co3O4)是近年来双功能催化剂研究的另一个热点.钴基催化剂有着催化 ORR和 OER的多价价态,然而其本身导电性能差,这一缺陷可通过杂化石墨化碳来弥补,石墨化碳有着优良的导电性能.据我们所知,目前仍没有关于氮磷共掺碳负载的 Co3O4双催化氧的研究.我们合成了氮磷共掺碳(NPC)负载的 Co3O4(Co3O4/NPC),并首次探索了其氧还原和析氧性能. Co3O4/NPC合成分两步进行.首先通过三聚氰胺与植酸之间的酯化或缩聚覆盖在导电炭黑颗粒表面,在保护气氛下焙烧得到 NPC,然后经溶剂热反应以及空气中氧化合成 Co3O4/NPC.催化剂的性能综合考虑了催化活性和稳定性两方面.采用线性扫描伏安法评估了 OER和 ORR的催化活性.对于 OER, Co3O4/NPC的起始电势是0.54 V (以饱和甘汞电极为参比电极),在0.80 V时电流密度达到21.95 mA/cm2,均优于 Co3O4/C和 NPC. Co3O4/NPC的高效 OER催化可归因于氮磷共掺物与 Co3O4之间的协同作用.对于 ORR, Co3O4/NPC的催化效率与商用 Pt/C相近,它们的扩散极限电流密度分别为–4.49和–4.76 mA/cm2(E =–0.80 V).在 ORR过程中, Co3O4起到主要的催化作用.采用计时电流(电流-时间)法评估了催化剂的稳定性.经6 h测定,对于 OER, Co3O4/NPC剩46%电流;而对于 ORR,剩95%电流.整体而言, Co3O4/NPC在 OER和 ORR中都表现出高的催化效率以及良好的稳定性.  相似文献   

12.
Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal–air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core–shell Co@Co3O4 nanoparticles embedded in CNT‐grafted N‐doped carbon‐polyhedra obtained by the pyrolysis of cobalt metal–organic framework (ZIF‐67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2, and RuO2 and thus ranking them among one of the best non‐precious‐metal electrocatalysts for reversible oxygen electrodes.  相似文献   

13.
采用一种简单方法制备具有优异氧还原反应(ORR)活性的、无金属的氮掺杂碳材料.以双氰胺(DCD)为氮源,蔗糖、β-环糊精和壳聚糖为不同的碳源,通过简单的热解法制备出氮掺杂的类石墨烯纳米片催化剂CN-nanosh(suc)、CN-nanosh(cyc)和CN-nanosh(ch).这些催化剂在碱性溶液中表现出优异的ORR...  相似文献   

14.
The lack of high‐efficient, low‐cost, and durable bifunctional electrocatalysts that act simultaneously for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is currently one of the major obstacles to commercializing the electrical rechargeability of zinc–air batteries. A nanocomposite CoO‐NiO‐NiCo bifunctional electrocatalyst supported by nitrogen‐doped multiwall carbon nanotubes (NCNT/CoO‐NiO‐NiCo) exhibits excellent activity and stability for the ORR/OER in alkaline media. More importantly, real air cathodes made from the bifunctional NCNT/CoO‐NiO‐NiCo catalysts further demonstrated superior performance to state‐of‐the‐art Pt/C or Pt/C+IrO2 catalysts in primary and rechargeable zinc–air batteries.  相似文献   

15.
Designing oxygen reduction reaction (ORR) catalysts with excellent performance has far-reaching significance. In this work, a high-activity biomass free-metal carbon catalyst with N and S co-doped was successfully prepared by using the KOH activated awn stem powder as the precursor with organic matter pore-forming doping technology, which is named TAAS. The content of pyridine nitrogen groups accounts for up to 36% of the total nitrogen content, and a rich pore structure is formed on the surface and inside, which are considered as the potential active centers of ORR. The results show that the specific surface area of TAAS reaches 191.04 m2/g, which effectively increases the active sites of the catalyst, and the initial potential and half slope potential are as high as 0.90 and 0.76 V vs. RHE, respectively. This study provides a low-cost, environmentally friendly and feasible strategy for the conversion of low-value agricultural and forestry wastes into high value-added products to promote sustainable development of energy and the environment.  相似文献   

16.
Nitrogen‐doped carbon nanosheets (NDCN) with size‐defined mesopores are reported as highly efficient metal‐free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR. The NDCN catalyst with a pore diameter of 22 nm exhibits a more positive ORR onset potential than that of Pt/C (?0.01 V vs. ?0.02 V) and a high diffusion‐limited current approaching that of Pt/C (5.45 vs. 5.78 mA cm?2) in alkaline medium. Moreover, the catalyst shows pronounced electrocatalytic activity and long‐term stability towards the ORR under acidic conditions. The unique planar mesoporous shells of the NDCN provide exposed highly electroactive and stable catalytic sites, which boost the electrocatalytic activity of metal‐free NDCN catalyst.  相似文献   

17.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

18.
Electrochemical energy storage and conversion devices play a key role in the development of clean, sustainable, and efficient energy systems to meet the sustainable growth of our society. However, challenging issues including the sluggish kinetics of oxygen electrode reactions involving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are present, limiting the implementation of devices such as metal‐air batteries, water electrolyzers, and regenerative fuel cells. In this review, various monometallic and bimetallic transition metal oxides (TMOs) and hydroxides are summarized in terms of their application for ORR/OER, in which the merits and demerits of various precious metal and carbon‐based metal oxide materials are discussed, with requirements for better electrocatalysts and catalyst support being introduced as well. Following this, different approaches to improve catalytic activity such as the introduction of doping and defects, the manipulation of crystal facets, and the engineering of supports, compositions, and morphologies are summarized in which TMOs with improved ORR/OER catalytic activities can be synthesized, further improving the speed, stability, and polarization of electrochemical energy storage and conversion devices. Finally, perspectives into the improvement of performance and the better understanding of ORR/OER mechanisms for bifunctional electrocatalysts using in situ spectroscopic techniques and density functional theory calculations are also discussed.  相似文献   

19.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

20.
N‐doped carbon materials represent promising metal‐free electrocatalysts for the oxygen reduction reaction (ORR), the cathode reaction in fuel cells, metal–air batteries, and so on. A challenge for optimizing the ORR catalytic activities of these electrocatalysts is to tune their local structures and chemical compositions in a rational and controlled way that can achieve the synergistic function of each factor. Herein, we report a tandem synthetic strategy that integrates multiple contributing factors into an N‐doped carbon. With an N‐containing MOF (ZIF‐8) as the precursor, carbonization at higher temperatures leads to a higher degree of graphitization. Subsequent NH3 etching of this highly graphitic carbon enabled the introduction of a higher content of pyridine‐N sites and higher porosity. By optimizing these three factors, the resultant carbon materials displayed ORR activity that was far superior to that of carbon derived from a one‐step pyrolysis. The onset potential of 0.955 V versus a reversible hydrogen electrode (RHE) and the half‐wave potential of 0.835 V versus RHE are among the top ranks of metal‐free ORR catalysts and are comparable to commercial Pt/C (20 wt %) catalysts. Kinetic studies revealed lower H2O2 yields, higher electron‐transfer numbers, and lower Tafel slopes for these carbon materials compared with that derived from a one‐step carbonization. These findings verify the effectiveness of this tandem synthetic strategy to enhance the ORR activity of N‐doped carbon materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号