共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of 10-(dimesitylboryl)- N, N-di- p-tolylbenzo[ c]phenanthren-4-amine (3-B(Mes) 2-[4]helix-9-N( p-Tol) 2 1 ) and 13-(dimesitylboryl)- N, N-di- p-tolyldibenzo[ c, g]phenanthren-8-amine (3-B(Mes) 2-[5]helix-12-N( p-Tol) 2 2 ) are reported herein. Their electrochemical and photophysical properties have been studied experimentally and theoretically. The donor and acceptor-substituted helicene derivatives exhibit moderate fluorescence quantum yields in THF ( Φf=0.48 and 0.61 for 1 and 2 , respectively), which are higher than unsubstituted ones ( Φf=0.18 for [4]helicene; Φf<0.05 for [ n]helicenes ( n≥5)). In the solid state, the Φf values are higher ( Φf=1.00 and 0.55 for 1 and 2 , respectively) than those in solution, most likely due to the restrictions of molecular motions. The S 1←S 0 transitions of 1 and 2 are predominately HOMO→LUMO transitions. Upon excitation with UV light, the interplanar angle between the two terminal aryl rings of the [5]helix core of 2 decreases (S 1 state compared with S 0 state), which is similar to placing a spring under an external force. 相似文献
2.
Three novel donor–π–acceptor (D–π–A) chromophores, with dipicolinate as acceptor, have been synthesized. All the compounds were characterized by 1H NMR, infrared (IR) spectroscopy, mass spectrometry (MS), and elemental analysis. 相似文献
3.
Three ordered mesoporous siliceous (OMS) materials known as MCM41s—unmodified MCM-41C16 (“C16”), and two MCM41s with different surface functionalities: MCM-41C16-SH (“C16-SH”) and MCM-41C16-NH 2 (“C16-NH 2”)—were synthesized and studied by inverse gas chromatography in order to determine their acceptor–donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, Δ G ads, of each chromatographed probe on the basis its specific retention volume. These Δ G ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle–Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A) and donors (parameter: K D). Considering the different compositions of the probes, each of which has different acceptor–donor properties, a new chromatographic test to supplement the Grob test is suggested. 相似文献
4.
Three ordered mesoporous siliceous (OMS) materials known as MCM41s—unmodified MCM-41C16 (“C16”), and two MCM41s with different surface functionalities: MCM-41C16-SH (“C16-SH”) and MCM-41C16-NH2 (“C16-NH2”)—were synthesized and studied by inverse gas chromatography in order to determine their acceptor–donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, ΔG ads, of each chromatographed probe on the basis its specific retention volume. These ΔG ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle–Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A) and donors (parameter: K D). Considering the different compositions of the probes, each of which has different acceptor–donor properties, a new chromatographic test to supplement the Grob test is suggested. 相似文献
5.
π-Conjugated push–pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C 60. Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size. 相似文献
6.
We synthesized new pyrene derivatives with strong bis( para-methoxyphenyl)amine donors at the 2,7-positions and n-azaacene acceptors at the K-region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7-substituted pyrenes but not for K-region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin-Day class-II and delocalized Robin-Day class-III species. 相似文献
7.
For the purpose of developing novel photovoltaic materials and organic photovoltaic devices with good performance characteristics, 5-cyano-2,2′:5′,2″-terthiophene (3T-CN) and 5-cyano-2,2′:5′,2″:5″,2″′-tetrathiophene (4T-CN) were synthesized. The 3T-CN and 4T-CN were donor–acceptor oligothiophene derivatives possessing mesogenic properties. The photovoltaic properties of 3T-CN and 4T-CN were studied. The rigid and flexible photovoltaic devices were fabricated using 3T-CN, 4T-CN, and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The results showed that the -CN group played an important role in increasing short circuit current density ( I sc) and power conversion efficiency (PCE). Both rigid device glass-ITO/4T-CN/PTCDA/Al and flexible device PET-ITO (indium tin oxides coated with polyethylene terephthalate)/4T-CN/PTCDA/Al had greater I sc and PCE compared with rigid device glass-ITO/4T/PTCDA/Al. It was possible that the -CN group, with strong electron-withdrawing character, and mesogenic properties of 4T-CN enhanced the efficiency by promoting forward interfacial electron transfer. 相似文献
8.
Protein deposits are associated with many devastating diseases and fluorescent ligands able to visualize these pathological entities are essential. Here, we report the synthesis of thiophene-based donor–acceptor–donor heptameric ligands that can be utilized for spectral assignment of distinct amyloid-β (Aβ) aggregates, one of the pathological hallmarks in Alzheimer's disease. The ability of the ligands to selectively distinguish Aβ deposits was abolished when the chemical composition of the ligands was altered. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species consisting of the same peptide or protein. In addition, such ligands might aid in interpreting the potential role of polymorphic Aβ deposits in the pathogenesis of Alzheimer's disease. 相似文献
9.
Construction of local donor–acceptor architecture is one of the valid means for facilitating the intramolecular charge transfer in organic semiconductors. To further accelerate the interface charge transfer, a ternary acceptor–donor–acceptor (A 1-D-A 2) molecular junction is established via gradient nitrogen substituting into the polymer skeleton. Accordingly, the exciton splitting and interface charge transfer could be promptly liberated because of the strong attracting ability of the two different electron acceptors. Both DFT calculations and photoluminescence spectra elucidate the swift charge transfer at the donor-acceptor interface. Consequently, the optimum polymer, N 3-CP, undergoes a remarkable photocatalytic property in terms of hydrogen production with AQY 405 nm=26.6 % by the rational design of asymmetric molecular junctions on organic semiconductors. 相似文献
10.
Aesthetic designs from nature enable new knowledge to be gained and, at the same time, inspire scientific models. In this context, multicomponent macrocycles embody the advantage of precisely positioning the structural units to achieve efficient communication between them. However, the construction of a functionalizable macrocycle for ultrafast charge separation and stabilization has not been attempted. Herein, we report the synthesis, crystal structure, and transient absorption of a new functionalizable macrocycle consisting of an oligothiophene-ring-strapped perylene bisimide. Transient absorption results point to a sequential improvement in charge separation and stabilization from the macrocycle to the corresponding linear dimer and 2D polymer due to the unique design. Our macrocycle design with a supportive spatial arrangement of the donor and acceptor units will inspire the development of more complex synthetic systems with exciting electron-transfer and charge-separation features. 相似文献
11.
Novel dyes based on extended fulvene motifs are reported. The carbon skeleton was generated by a catalyzed addition of donor–acceptor cyclopropanes to naphthoquinone. The hydroxy group at the central ring of the tricyclic fulvene motif was converted into the triflate, which reacted efficiently with a wide range of nucleophiles, resulting in substitution and thereby providing new derivatives. The synthetic versatility allowed us to investigate the absorption, electrochemical, and UV/Vis-NIR spectroelectrochemical properties of these dyes as a function of the substituents. The dyes were shown to participate in reductive electrochemistry, the reversibility of which can be improved by appropriate selection of the substituents. Additionally, first signs of NIR electrochromism are presented, opening new avenues for the future investigations of such dyes. 相似文献
12.
Two series of 2,5-di(butoxy)phenyleneethynylenes, one halogenated ( n PEC4-X ; n=2, 3, or 4) and the other boron-dipyrromethene (BODIPY) terminated ( n PEC4-By ; n=3, 4, or 5; By=BODIPY), were synthesized monodirectionally by the step-by-step approach and the molecular structure was corroborated by NMR spectroscopy ( 1H, 13C-DEPTQ-135, COSY, HSQC, HMBC, 11B, 19F) and MALDI-TOF mass spectrometry. The multiplicity and J-coupling constants of 1H, 11B, and 19F/ 11B NMR signals revealed, in the n PEC4-By series, that the phenyl in the meso position of BODIPY becomes electronically part of the conjugation of the phenyleneethynylene chain, whereas BODIPY is electronically isolated. The photophysical, electrochemical, and theoretical studies confirm this finding because the properties of n PEC4-By are comparable to those of the n PEC4-X oligomers and BODIPY, indicating negligible electron communication between BODIPY and the n PEC4 moieties. Nevertheless, energy transfer (ET) from n PEC4 to BODIPY was rationalized by spectroscopy and theoretical calculations. Its yield decreases with the n PEC4 conjugation length, according to the increase in distance between the two chromophores, resulting in dual emission for the longest oligomer in which ET is quenched. 相似文献
13.
The significance of multiple number of donor–acceptor entities on a central electron donor in a star-shaped molecular system in improving light energy harvesting ability is reported. For this, donor–acceptor–donor type conjugates comprised up to three entities ferrocenyl (Fc)-diketopyrrolopyrrole (DPP) onto a central triphenylamine (TPA), ( 4 – 6 ) by the Pd-catalyzed Sonogashira cross-coupling reactions have been newly synthesized and characterized. Donor–acceptor conjugates possessing diketopyrrolopyrrole (1 to 3 entities) onto the central triphenylamine, ( 1 – 3 ) served as reference dyads while monomeric DPP and Fc-DPP served as control compounds. Both DPP and Fc-DPP carrying conjugates exhibited red-shifted absorption compared to their respective control compounds revealing existence of ground state interactions. Furthermore, DPP fluorescence in 4 – 6 was found to be quantitatively quenched while for 1 – 3 , this property varied between 73–65 % suggesting occurrence moderate amounts of excited state events. The electrochemical investigations exhibited an additional low potential oxidation in the case of Fc-DPP-TPA based derivatives ( 4 – 6 ) owing to the presence of ferrocene unit(s). This was in addition to DPP and TPA redox peaks. Using spectral, electrochemical and computational studies, Gibbs free-energy calculations were performed to visualize excited state charge separation (Δ GCS) in these donor–acceptor conjugates as a function of different number of Fc-DPP entities. Formation of Fc +-DPP .−-TPA charge separated states (CSS) in the case of 4 – 6 was evident. Using spectroelectrochemical studies, spectrum of CSS was deduced. Finally, femtosecond transient absorption spectral studies were performed to gather information on excited state charge separation. Increasing the number of Fc-DPP entities in 4 – 6 improved charge separation rates. Surprisingly, lifetime of the charge separated state, Fc +-DPP .−-TPA was found to persist longer with an increase in the number of Fc-DPP entities in 4 – 6 as compared to Fc-DPP-control and simple DPP derived donor–acceptor conjugates in literature. This unprecedented result has been attributed to subtle changes in Δ GCS and Δ GCR and the associated electron coupling between different entities. 相似文献
14.
Free base, zinc and palladium π-extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram-positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex. 相似文献
15.
This work investigates a light-driven 3-component sulfonylation reaction of indolizines without needing any external photocatalyst. The mechanistic investigations support the formation of an electron donor–acceptor (EDA) complex in situ. This transformation offers a mild and sustainable approach with high functional group tolerance for the synthesis of 3-sulfonylated indolizines. This compound class has valuable photophysical properties and represents promising candidates in various applications related to fluorescence. 相似文献
16.
Asymmetric platinum donor–acceptor complexes [(pimp)Pt(Q 2−)] are presented in this work, in which pimp=[(2,4,6-trimethylphenylimino)methyl]pyridine and Q 2−=catecholate-type donor ligands. The properties of the complexes are evaluated as a function of the donor ligands, and correlations are drawn among electrochemical, optical, and theoretical data. Special focus has been put on the spectroelectrochemical investigation of the complexes featuring sulfonyl-substituted phenylendiamide ligands, which show redox-induced linkage isomerism upon oxidation. Time-dependent density functional theory (TD-DFT) as well as electron flux density analysis have been employed to rationalize the optical spectra of the complexes and their reactivity. Compound 1 ([(pimp)Pt(Q 2−)] with Q 2−=3,5-di- tert-butylcatecholate) was shown to be an efficient photosensitizer for molecular oxygen and was subsequently employed in photochemical cross-dehydrogenative coupling (CDC) reactions. The results thus display new avenues for donor–acceptor systems, including their role as photocatalysts for organic transformations, and the possibility to introduce redox-induced linkage isomerism in these compounds through the use of sulfonamide substituents on the donor ligands. 相似文献
17.
The effects of solution-state dielectric and intermolecular interactions on the degree of charge separation provide a route to understanding the switching properties and concentration dependence of donor–acceptor Stenhouse adducts (DASAs). Through solvatochromic analysis of the open-form DASA in conjunction with X-ray diffraction and computational theory, we have analyzed the ionic character of a series of DASAs. First- and third-generation architectures lead to a higher zwitterionic resonance contribution of the open form and a zwitterionic closed form, whereas the second-generation architecture possesses a less charge-separated open form and neutral closed form. This can be correlated with equilibrium control and photoswitching solvent compatibility. As a result of the high contribution of the zwitterionic resonance forms of first- and third-generation DASAs, we were able to control their switching kinetics by means of ion concentration, whereas second-generation DASAs were less affected. Importantly, these results show how the previously reported concentration dependence of DASAs is not universal, and that DASAs with a more hybrid structure in the open form can achieve photoswitching at high concentrations. 相似文献
18.
A 1,3-aminothiolation was realized by reacting 2-substituted cyclopropane 1,1-dicarboxylates with sulfonamides and N-(arylthio)succinimides. Under Sn(OTf) 2 catalysis the transformation proceeded smoothly to the corresponding ring-opened products bearing the sulfonamide in the 1-position next to the donor and the arylthio residue in the 3-position next to the acceptor. The procedure was extended to the corresponding selenium analogues by employing N-(phenylseleno)succinimides as an electrophilic selenium source. 相似文献
19.
We have mapped the energy demands of the geometrical changes in donor–acceptor complexes BH 3NH 3 and AlCl 3NH 3 and in the course of their formation from their monomers. We have varied the individual geometrical parameters systematically and performed ab initio quantum chemical calculations for these structures. We investigated the energy requirements to change bond lengths and bond angles in both the monomers and complexes and the angles of torsion in the complexes. The changes of bond lengths require more energy in the monomers than in the complexes. The energies to change the acceptor bond angles in the monomers are markedly higher than in the complexes. The changes in the geometrical parameters during the complexation process are more moderate in donors than in acceptors, in agreement with prior experimental observations. The geometry versus energy variations related to the process of complexation are in agreement with the notion of relative rigidity of the donor parts and the more compliant nature of the acceptor parts as well as with the notion of competing effects in the structures of the complexes. 相似文献
20.
The effect of donor (D)–acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two- and three-dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight-fold conductivity enhancement. The first evaluation of redox behavior of buckyball- or tetracyanoquinodimethane-integrated crystalline was conducted. In parallel with tailoring the D-A alignment responsible for “static” changes in materials properties, an external stimulus was applied for “dynamic” control of the electronic profiles. Overall, the presented D–A strategic design, with stimuli-controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials. 相似文献
|