首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Jiao‐Tai‐Wan, which is composed of Coptis Rhizoma and Cinnamon Cortex, has been recently used to treat type 2 diabetes. Owing to lack of data on its prototypes and metabolites, elucidation of the pharmacological and clinically safe levels of this formula has been significantly hindered. To screen more potential bioactive components of Jiao‐Tai‐Wan, we identified its multiple prototypes and metabolites in the plasma of type 2 diabetic rats by ultra high performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. A total of 47 compounds were identified in the plasma of type 2 diabetic rats, including 22 prototypes and 25 metabolites, with alkaloids constituting the majority of the absorbed prototype components. In addition, this is the first study to detect vanillic acid, gallic acid, chlorogenic acid, protocatechuic acid, 2‐hydroxycinnamic acid, 3‐hydroxycinnamic acid, 4‐hydroxycinnamic acid, and 2‐methoxy cinnamic acid after oral administration of Jiao‐Tai‐Wan. The prototypes from Jiao‐Tai‐Wan were extensively metabolized by demethylation, hydroxylation, and reduction in phase Ⅰ metabolic reactions and by methylation or conjugation of glucuronide or sulfate in phase Ⅱ reactions. This is the first systematic study on the components and metabolic profiles of Jiao‐Tai‐Wan in vivo. This study provides a useful chemical basis for further pharmacological research and clinical application of Jiao‐Tai‐Wan.  相似文献   

2.
3.
Radix Cudramiae, known as “Chuan-Po-Shi” in China, is a herbal medicine widely used in the southwest of the country, especially applied by the Miao and Zhuang nationalities for the treatment of liver diseases, such as acute liver injury and liver fibrosis. As a kind of ethnomedicine, the report on its chemical analysis was still blank, which restricted its clinical application. Therefore, this paper aimed to illustrate the chemical characteristics of Radix Cudramiae. A rapid analytical strategy based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed to profile the natural small-molecular compounds in Radix Cudramiae, as well as the related prototypes and their metabolites in rats after drug administration. As a result, a total of 74 compounds were detected in the aqueous exact of Radix Cudramiae. In vivo, 45 chemicals including 16 prototypes and 29 metabolites in rat serum, along with 35 chemicals including 17 prototypes and 18 metabolites in rat liver, were screened out and identified. For the first time, the chemical constituents of Radix Cudramiae and their metabolic characteristics were discovered. It was hoped that this work would be beneficial for the safe and effective application of Radix Cudramiae in a clinic.  相似文献   

4.
Xiao‐Qing‐Long‐Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao‐Qing‐Long‐Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao‐Qing‐Long‐Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MSE determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao‐Qing‐Long‐Tang and provided evidence to obtain a more comprehensive metabolic profile.  相似文献   

5.
Magnoflorine, an important aporphine alkaloid in Coptidis Rhizoma, is increasingly attracting research attention because of its pharmacological activities. The in vivo and in vitro metabolism of magnoflorine was investigated by LC LTQ‐Orbitrap MS. In vivo samples including rat urine, feces, plasma and bile were collected separately after both oral (50 mg kg?1) and intravenous administration (10 mg kg?1) of magnoflorine, along with in vitro samples prepared by incubating magnoflorine with rat intestinal flora and liver microsome. As a result, 12 metabolites were found in biological samples. Phase I metabolites were identified in all biological samples, while phase II metabolites were mainly detected in urine, plasma and bile. In a pharmacokinetic study, rats were not only dosed with magnoflorine via oral (15, 30 and 60 mg kg?1) and intravenous administration (10 mg kg?1) but also dosed with Coptidis Rhizoma decoction (equivalent to 30 mg kg?1 of magnoflorine) by intragastric administration to investigate the interaction of magnoflorine with the rest of compounds in Coptidis Rhizoma. Studies showed that magnoflorine possessed lower bioavailability and faster absorption and elimination. However, pharmacokinetic parameters altered significantly (p < 0.05) when magnoflorine was administered in Coptidis Rhizoma decoction. Oral gavage of Coptidis Rhizoma decoction decreased the absorption and elimination rates of magnoflorine, which revealed that there existed pharmacokinetic interactions between magnoflorine and the rest of ingredients in Coptidis Rhizoma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Honey‐processed Astragalus is a widely used traditional Chinese medicine that has a better effect on reinforcing “Qi” (vital energy) than the raw one. A comparative study of metabolites analysis between them in rat serum for finding the bioactive ingredients was carried out using serum pharmacochemistry and multivariate statistical analysis. The blood collection methods and time were optimized first. Then the prototypes and metabolites in serum samples after oral administration were investigated by ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry integrated with principal component analysis and orthogonal partial least squares discriminant analysis. The contents of metabolites were also analyzed to evaluate the metabolic profile differences. As a result, nine prototypes and 36 metabolites were identified. Only two prototypes and 15 metabolites were different between raw and honey‐processed Astragalus. Their biotransformation reactions contained the process of oxidation, demethylation, and hydrolysis in phase I and glucuronide conjugation or sulfate conjugation in phase II. Most of the detected metabolites were transformed from isoflavones and isoflavanes. Our results expand the knowledge about the influence of honey‐processing on Astragalus and suggest the different curative effects between raw and honey‐processed Astragalus might due to their therapeutic material discrepancy.  相似文献   

7.
Farfarae Flos, the dried flower buds of Tussilago farfara L., is usually used to treat coughs, bronchitic and asthmatic conditions as an important traditional Chinese medicine. Tussilagone and methl butyric acid tussilagin ester are seen as representatives of two kinds of active substances. In addition, the pyrrolizidine alkaloids, mainly senkirkine and senecionine, present in the herb can be hepatoxic. In this study, a rapid and sensitive ultra‐high‐performance liquid chromatography coupled with hybrid triple quadrupole time‐of‐flight mass spectrometry method was successfully applied to identify the metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine. A total of 35, 37, 18 and nine metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine in rats were tentatively identified. Hydrolysis, oxidation, reduction and demethylation were the major metabolic reactions for tussilagone and methl butyric acid tussilagin ester. The main biotransformation routes of senkirkine and senecionine were identified as demethylation, N‐methylation, oxidation and reduction. This study is the first reported analysis and characterization of the metabolites and the proposed metabolic pathways might provide further understanding of the metabolic fate of the chemical constituents after oral administration of Farfarae Flos extract in vivo.  相似文献   

8.
Rhizoma coptidis has been used for a long time in China owing to its anti-bacterial, anti-diabetes, anti-hyperlipidemia and anti-obesity activities. However, the in vivo biotransformation of Rhizoma coptidis is still unclear to date. In this study, a three-step strategy using UPLC-Q-TOF/MS was applied to clarify the in vivo absorbed constituents and metabolites in rats after oral administration of Rhizoma coptidis. First, alkaloids in Rhizoma coptidis extract were identified. Second, six abundant alkaloids (berberine, palmatine, coptisine, epiberberine, jatrorrhizine, and columbamine) were selected as representative prototypes and the metabolic fates of them in rats were investigated to obtain a database of Rhizoma coptidis-derived metabolites. Finally, the metabolic profiles of Rhizoma coptidis were fully elucidated based on the above-mentioned results. In summary, 29 alkaloids were identified in Rhizoma coptidis, and a database of Rhizoma coptidis-derived metabolites was obtained with 144 characterized metabolites. A total of 89 xenobiotics including 12 absorbed constituents and 77 metabolites were identified in dosed rat biosamples. Major metabolic pathways of Rhizoma coptidis were hydroxylation, reduction, methylation, demethylation, demethylenation, desaturation, glucuronidation and sulfation. This is the first systematic study on the in vivo absorbed constituents and metabolic profiling of Rhizoma coptidis and will be beneficial for its further studies.  相似文献   

9.
Fu‐Ke‐Zai‐Zao pills, the famous traditional Chinese medicine formula, composed of 42 medicinal herbs, have been widely used to treat various gynecological diseases. However, the chemical constituents and metabolic profiling of Fu‐Ke‐Zai‐Zao pills remain largely unknown, which hampers improvement of the quality control and pharmacological elucidation of this formula. In the present study, a sensitive and selective ultra high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry method was developed to separate and identify the comprehensive chemical constituents of Fu‐Ke‐Zai‐Zao pills. According to the results, a total of 83 compounds were identified, including phenylpropionic acids, flavonoids, terpenoids, triterpene saponins, and phthalides, and 81 compounds were first reported in Fu‐Ke‐Zai‐Zao pills. Moreover, the absorbed components and metabolites in rat plasma after intragastric administration of Fu‐Ke‐Zai‐Zao pills were also detected by the same analytical method. A total of 36 compounds were identified, including 21 prototypes and 15 metabolites. The latter were generated through the metabolic pathways of methylation and glucuronidation, and glucuronidated metabolites were the main constituents in the plasma. This is the first systematic study on the chemical constituents and metabolic profiling of Fu‐Ke‐Zai‐Zao pills, and the results provide valuable chemical information for further elucidating pharmacological effects and mechanism of action of Fu‐Ke‐Zai‐Zao pills.  相似文献   

10.
Fangji Huangqi Tang (FHT), has been reported to show effects on nephrotic syndrome, but its mechanism of action and bioactive components have not yet been determined. In this study, a method using UPLC–HRMS/MS was established for the detection and identification of the chemical constituents and metabolites absorbed into the blood. Absorbed components in serum were then used for the network pharmacology analysis to deduce the mechanism and effective components. A total of 86 compounds were identified or tentatively characterized. Based on the same instrumental conditions, 85 compounds were found in rat serum after oral administration of FHT, including 22 prototypes and 63 metabolites. Network pharmacology analysis showed that absorbed components, such as (3R)-2′,3′,4′,7-tetrahydroxyisoflavan, astrapterocarpan, cycloastragenol, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavan, astragaloside IV, astrapterocarpan glucoside and glycyrrhetinic acid, could be responsible for the pharmacological activity of nephrotic syndrome by regulating the VEGF signaling pathway, focal adhesion and MAPK signaling pathway. Furthermore, the pathway-target network showed that the MAPK1, AKT2 and CDC42 were involved in the signal pathways above. This study provides a scientific basis for the mechanism and effective ingredients of FHT.  相似文献   

11.
Ganoderic acid B (GAB), a representative triterpenoid in Ganoderma lucidum, possesses various pharmaceutical effects and has been used as a chemical marker in quality control of G. lucidum and related products. The metabolites of GAB in vivo after its oral administration to rats were investigated by liquid chromatography coupled with electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. A total of 14 metabolites of GAB in rat plasma, bile and various organs were detected and identified by direct comparison with the authentic compounds and their characteristic mass fragmentation patterns. The results showed that oxidization and hydroxylation were the common metabolic pathways for GAB in rats. Moreover, some reduction metabolites of GAB were detected in rat kidney and stomach and glucuronidation only appeared in rat bile. This is the first report on the metabolites of GAB in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Gleditsiae Spina, the thorn of Gleditsia sinensis Lam., has a long history of being used as a traditional medicine in East Asian countries. However, only a few biologically active substances have been identified from it. In this study, the epidermis, xylem and pith of Gleditsiae Spina, respectively Gs-E, Gs-X and Gs-P, were studied. We used a widely targeted metabolomics method to investigate the chemical composition of Gs-E, Gs-X and Gs-P. A total of 728 putative metabolites were identified from Gleditsiae Spina, including 211 primary metabolites and 517 secondary metabolites. These primary and secondary metabolites could be categorized into more than 10 different classes. Flavonoids, phenolic acids, lipids, amino acids and derivatives, and organic acids constituted the main metabolite groups. Multivariate statistical analysis showed that the Gs-E, Gs-X and Gs-P samples could be clearly separated. Differential accumulated metabolite (DAM) analysis revealed that more than half of the DAMs exhibited the highest relative concentrations in Gs-E, and most of the DAMs showed the lowest relative concentrations in Gs-X. Moreover, 11 common differential primary metabolites and 79 common differential secondary metabolites were detected in all comparison groups. These results further our understanding of chemical composition and metabolite accumulation of Gleditsiae Spina.  相似文献   

13.
Pingxiao capsule (PXC) is a herbal medicine used for adjuvant therapy in breast cancer. However, the constituents and absorbed components of the formula and their related metabolites have not been elucidated to date. PXC is a typical traditional Chinese medicine formula consisting of Strychnos nux-vomica L., Curcuma wenyujin Y. H., Agrimonia pilosa Ledeb., Toxicodendron vernicifluum, Trogopterus dung, alumen, potassium nitrate (saltpeter) and Citrus aurantium L. In this study, a ultra-high performance liquid chromatography system equipped with high resolution Q-Orbitrap mass spectrometry (MS) and comparative Global Natural Product Social molecular networking together with the Compound Discoverer software were used to identify metabolites of PXC in vitro and in vivo. Based on untargeted data-dependent MS2 and data-mining techniques, 89 peaks of alkaloids, flavonoids, organic acid and phenolic compounds were identified in a PXC 70% methanol extract. Furthermore, 15 absorbed prototype compounds and their metabolites were rapidly confirmed in rat blood. Glucuronidation, oxidation, methylation and hydroxylation were the main metabolic pathways. We fully clarified the chemical constituents of PXC and provided a scientific and efficient strategy for rapid discovery and identification of prototypes and their metabolites in rat plasma using high-resolution MS aided by Global Natural Product Social and Compound Discoverer software.  相似文献   

14.
It is an essential requirement to clarify the metabolites of traditional Chinese medicine (TCM) injections, which contain numerous ingredients, to assess their safe and effective use in clinic. Salvianolic acid for injection (SAFI), made from hydrophilic phenolic acids in Salvia miltiorrhiza Bunge, has been widely used for the treatment of cerebrovascular diseases, but information on its metabolites in vivo is still lacking. In the present study, we aimed to holistically characterize the metabolites of the main active ingredients in rat plasma, bile, urine and feces following intravenous administration of SAFI. An ultra‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UPLC/Q‐TOF‐MS) method was developed. Combining information on retention behaviors, multistage mass spectra and literature data, a total of eight prototypes and 52 metabolites were tentatively characterized. Metabolites originated from rosmarinic acid and salvianolic acid B comprised the majority of identified compounds. Meanwhile, four metabolites derived from salvianolic acid D and five from salvianolic acid B are reported for the first time. This study revealed that methylation, sulfation and glucuronidation were the major metabolic pathways of phenolic acids in SAFI in vivo. Furthermore, the developed UPLC/Q‐TOF‐MS method could also benefit the metabolic investigation of extracts and preparations in TCM with hydrophilic ingredients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Qi‐Jing‐Sheng‐Bai granule is an effective traditional Chinese medicine formula that has been widely used for the treatment of leukopenia post radiotherapy or chemotherapy. However, its chemical constituents were still unclear, which hindered interpreting bioactive constituents and studying integrative mechanisms. In this study, we developed a three‐step strategy to characterize the chemical constituents and metabolites of Qi‐Jing‐Sheng‐Bai by using ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. As a result, a total of 143 compounds, including 56 flavonoids, 51 saponins, and 36 other compounds, of which contained six pairs of isomers, were tentatively identified and characterized via reference standards and by comparing mass spectrometry data with literature. After oral administration of 15 g/kg Qi‐Jing‐Sheng‐Bai, a number of 42 compounds including 24 prototype compounds and 18 metabolites have been detected in the serum of rats. This work serves as the first reference for Qi‐Jing‐Sheng‐Bai chemical components and metabolites. Moreover, it provided a rapid and valid analytical strategy for characterization of the chemical compounds and metabolites of traditional Chinese medicine formula.  相似文献   

16.
Da‐Huang‐Xiao‐Shi decoction has been used to treat damp‐heat jaundice for centuries in China. However, the absorbed components of the decoction and their related metabolites are little known until now. In this work, an integrative strategy based on liquid chromatography coupled with mass spectrometry (time‐of‐flight/triple‐quadruple tandem) was adopted to effectively identify the prototypes and their metabolites and to speculate the possible transformation pathways among these compounds. Using pattern recognition approaches, the exogenous compounds in rat plasma were screened out from endogenous compounds and then distinguished into prototypes and metabolites according to the characteristic information from the self‐building database of Da‐Huang‐Xiao‐Shi decoction. On this basis, the metabolic profiles of main prototypes (such as iridoid glycosides, alkaloids, and anthraquinones) were proposed. As a result, a total of 62 related prototypes and their metabolites were detected and tentatively identified in rat plasma after administration, and among them, three prototypes were found for the first time. Glucuronidation and sulfation were deduced to be the main metabolic pathways of alkaloids, iridoid glycosides, and anthraquinones. The integrative strategy used in this study was an effective approach to rapidly discover and characterize the prototypes and their metabolites from a complex bio‐sample without the use of standard substances.  相似文献   

17.
A novel approach using metabolomics coupled with a metabolic network was used to investigate the effects of Tao‐Hong‐Si‐Wu decoction (THSWD) on the rat model of acute blood stasis syndrome. Acute blood stasis syndrome was induced by placing the rats in ice‐cold water following two injections with epinephrine. The hemorheological indicators [whole blood viscosity (WBV) and plasma viscosity (PV)] and the blood coagulation indicators [thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB)] were detected. The nonparametric univariate method and multivariate statistical analysis were performed for determining the potential biomarkers. A correlation map was structured between biochemical indicators and hub metabolites to explain the effects mechanism of THSWD. After the administration of THSWD, the levels of WBV, PV, TT, APTT and FIB returned to levels observed in the control group. According to metabolomics coupled with metabolic network analysis, the intervention of THSWD in rats with acute blood stasis syndrome induced substantial and characteristic changes in their metabolic profiles. Fifteen metabolites were screened, which mainly involved 10 pathways and five hub metabolites, namely, l ‐glutamate, l ‐phenylalanine, N‐acylsphingosine, arachidonic acid and phosphatidate. The biochemical indicators and hub metabolites could be adjusted to close to normal levels by THSWD. Therefore, combining metabolomics and metabolic network helped to evaluate the effects of THSWD on acute blood stasis.  相似文献   

18.
The chemical fingerprinting and metabolite profile in a rat plasma sample after intragastric administration of Yangyin qingfei decoction (YYQFD, 14 g/kg) were investigated. First, YYQFD was analyzed by UPLC/Q‐TOF MS to establish the chemical composition database by comparing their retention behavior, accurate molecular mass and MS2 data with those of references or known compounds in the literature. In this database, 100 chemical constituents with information on retention time, molecular mass, molecular formula, MS2 data and compound name were identified, which can provide compound information for further metabolite profiling studies. Furthermore, 64 compounds including 37 prototypes and 27 metabolites were detected in the dosed rat plasma sample, and the metabolic pathways of YYQFD were hydrolyzation, hydroxylation, dehydrogenation, glucuronidation, glucosylation, sulfation and mixed modes. Among the five component herbs in the YYQFD, Glycyrrhizae Radix et Rhizome and Fritillariae Thunbergii bulbs were actively metabolized, contributing 16 and 7 metabolites, respectively. It is suggested that chemical characterization and metabolite profiling studies are valuable to elucidate the material basis of herbal preparations.  相似文献   

19.
20.
Paederia scandens (Lour.) Merri. (Jishiteng in Chinese) is a Chinese traditional medicine widely used in treating various diseases. However, its active components have remained unknown. In the present study, a rapid and sensitive method by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-MSn) techniques was employed to investigate the absorbed constituents in rats after oral administration of Paederia scandens decoction. By comparing their MS data with those of authentic compounds and published data, a total of six compounds (paederosid, 1; paederosidic acid, 2; paederosidic acid methyl ester, 3; 6-hydroxy geniposide, 4; asperuloside, 5; and deacetyl asperuloside, 6) were identified in the P. scandens decoction samples. In addition, a total of seven compounds, including three iridoid glucosides and four of their metabolites, were identified in rat urine samples after administration. In addition, six compounds, including four iridoid glucosides and two of their metabolites, were identified in rat serum samples after administration. Our results significantly narrow the range of potentially active compounds in P. scandens decoction, and build a solid foundation for future research on its mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号