首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Blends of poly(N‐methyldodecano‐12‐lactam) PMDL with poly(4‐vinyphenol) PVPh have been studied by the DSC and ATR FTIR methods. The difference in glass transition temperature Tg between the components is 206 °C. A single composition‐dependent Tg suggests miscibility of the system, that is, homogeneity on the scale of about 10 nm. Fitting of the equation of Brostow et al. to the Tg data indicates relatively strong specific interactions and high complexity of the system. The Schneider's equation applied separately to low‐ and high‐PVPh regions provides good agreement with experiment; the calculated curves cross at the point of PVPh weight fraction 0.27. In the low‐PVPh region, the analysis indicates weak interactions with predominance of segment homocontacts and strong involvement of conformational entropy. In the high‐PVPh region, strong specific interactions predominate and entropic effects are suppressed. Composition dependences of the heat capacity difference at Tg and the width of glass transition indicate strong interactions in the system and existence of certain heterogeneities on segmental level, respectively. According to ATR FTIR, hydrogen bonds between PVPh as proton donor and PMDL as proton acceptor induce miscibility in blends of higher PVPh content (above about 0.28 weight fraction). In low‐PVPh blends, it is conformational entropy that enables intimate intermolecular mixing. Hydrogen bonds adopt several (distorted) geometries and are on average stronger than average hydrogen bonds formed in self‐associating PVPh. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
Miscibility with a linear T g–composition relationship was proven for blend of poly(butylene adipate-co-butylene terephthalate) [P(BA-co-BT)] with poly(4-vinyl phenol) (PVPh). In comparison to the blends of PBA/PVPh and poly(butylene terephthalate) (PBT)/PVPh, the Kwei’s T g model fitting on data for the P(BA-co-BT)/PVPh blend yields a q value between those for the PBA/PVPh and PBT/PVPh blends. The q values suggest that the interaction strength in the P(BA-co-BT)/PVPh blend is not as strong as that in the PBT/PVPh blend. Upon mixing the PVPh into the immiscible blend of PBA and PBT, the ternary PBA/PBT/PVPh blends only exhibits partial miscibility. Full-scale ternary miscibility in whole compositions is not possible owing to the significant ∆χ effect (χ ij  – χ ik ). The wavenumber shifts of the hydroxyl IR absorbance band indicates that the H-bonding strength is in decreasing order—PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh—and shows that the BA segment in the copolymer tends to defray interactions between P(BA-co-BT) and PVPh in blends.  相似文献   

3.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

4.
Poly(l-lactide) (PLLA) was melt-blended with poly(p-vinyl phenol) (PVPh) using a two-roll mill, and the miscibility between PLLA and PVPh and degradation of the blend films were investigated. It was found that PLLA/PVPh blend has miscibility in the amorphous state because only single Tg was observed in the DSC and DMA measurements. The Tg of the PLLA/PVPh blend could be controlled in the temperature range from 55 °C to 117 °C by changing the PVPh weight fraction. In alkaline solution, degradation rate of PLLA/PVPh blends was faster than that of neat PLLA because PVPh could dissolve in alkaline solution. The surface morphology of degraded PLLA and PLLA/PVPh blend were observed by SEM. The surface morphology of degraded PLLA/PVPh blend was finer than that of PLLA. Young's modulus of PLLA/PVPh blend increased with increasing PVPh content. Yield stress of PLLA/PVPh blends whose PVPh content was less than 30 wt% kept the level of about 55 MPa and that of PLLA/PVPh blend whose PVPh content was 40 wt% is much lower than that of neat PLLA.  相似文献   

5.
Hydroxyl‐terminated poly(ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) was synthesized by the nucleophilic substitution reaction of 4,4′‐difluorobenzophenone with tert‐butyl hydroquinone with potassium carbonate as a catalyst and N‐methyl‐2‐pyrrolidone as a solvent. Diglycidyl ether of bisphenol A epoxy resin was toughened with PEEKTOHs having different molecular weights. The melt‐mixed binary blends were homogeneous and showed a single composition‐dependent glass‐transition temperature (Tg). Kelley–Bueche and Gordon–Taylor equations gave good correlation with the experimental Tg. Scanning electron microscopy studies of the cured blends revealed a two‐phase morphology. A sea‐island morphology in which the thermoplastic was dispersed in a continuous matrix of epoxy resin was observed. Phase separation occurred by a nucleation and growth mechanism. The dynamic mechanical spectrum of the blends gave two peaks corresponding to epoxy‐rich and thermoplastic‐rich phases. The Tg of the epoxy‐rich phase was lower than that of the unmodified epoxy resin, indicating the presence of dissolved PEEKTOH in the epoxy matrix. There was an increase in the tensile strength with the addition of PEEKTOH. The fracture toughness increased by 135% with the addition of high‐molecular‐weight PEEKTOH. The improvement in the fracture toughness was dependent on the molecular weight and concentration of the oligomers present in the blend. Fracture mechanisms such as crack path deflection, ductile tearing of the thermoplastic, and local plastic deformation of the matrix occurred in the blends. The thermal stability of the blends was not affected by blending with PEEKTOH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 541–556, 2006  相似文献   

6.
The isothermal time–temperature-transformation (TTT) cure diagram is developed in this article to investigate the effect of thermoplastic toughening agent on glass transition temperature (T g) and cure kinetics of an epoxy carbon fiber prepreg, Cycom 977-2 unidirectional (UD) tape. The glass transition temperature was measured using differential scanning calorimetry (DSC) over a wide range of isothermal cure temperatures from 140 to 200 °C. Times to gelation and vitrification were measured using shear rheometry. The glass transition temperature master curve was obtained from the experimental data and the corresponding shift factors were used to calculate the activation energy. The kinetic rate model was utilized to construct iso-T g contours using the calculated activation energy. It was observed that the iso-T g contours did not follow the behavior of the neat epoxy resin, since they deviated from the gel time curve. This deviation was believed to be the effect of the thermoplastic toughening agent. The behavior of the neat epoxy resin in 977-2 was shown by constructing the iso-T g contours using the activation energy obtained from gel time modeling.  相似文献   

7.
Effects of water on epoxy cure kinetics are investigated. Experimental tests show that absorbed water in an uncured bisphenol‐F/diethyl‐toluene‐diamine epoxy system causes an increase in cure rate at low degrees of cure and a decrease in cure rate at high degrees of cure. Molecular simulations of the same epoxy system indicate that the initial increase in cure rate is due to an increase in molecular self‐diffusion of the epoxy molecules in the presence of water. Effects of water on the glass transition temperature (Tg) of the crosslinked thermoset are also studied. Both experiments and simulations show that water decreases Tg. Both types of results indicate that Tg effects are small below 1% water by weight, but that Tg depression occurs much quickly with increasing water content above 1%. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1150–1159  相似文献   

8.
Dynamic mechanical spectroscopy has been used to investigate the cure of a thermoplastically modified trifunctional epoxy resin. The complex dissolution, curing behavior, and variations in the glass transition of the thermoplastic (PSF) phase were described, as was the Tg behavior of the epoxy phase. Prereaction of the PSF material with the epoxy resin was found to greatly increase the solubility of the PSF in the epoxy phase with little effect on the concentration of the epoxy monomer dissolving in the PSF phase. The curing behavior of the epoxy component in the thermoplastic phase was also investigated, in addition to changes in the mobility of the network at both gelation and vitrification. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Blends of poly(acrylic acid) (PAA) and poly(p‐vinylphenol) (PVPh) were prepared from N,N‐dimethylformamide (DMF) and ethanol solutions. The DMF‐cast blends exhibited single Tg's, as shown by modulated differential scanning calorimetry, whereas the ethanol‐cast blends had double Tg's. Fourier transform infrared spectroscopy showed that there was a specific interaction between PAA and PVPh in the DMF‐cast blends. The single‐Tg blends cast from DMF showed single‐exponential decay behavior for the proton spin–lattice relaxation in both the laboratory frame and the rotating frame, indicating that the two polymers mixed intimately on a scale of 2–3 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 789–796, 2003  相似文献   

10.
The fracture behavior of a core-shell rubber (CSR) modified cross-linkable epoxy thermoplastic (CET) system, which exhibits high rigidity, highT g, and low crosslink density characteristics, is examined. The toughening mechanisms in this modified CET system are found to be cavitation of the CSR particles, followed by formation of extended shear banding around the advancing crack. With an addition of only 5 wt.% CSR, the modified CET possesses a greater than five-fold increase in fracture toughness (G IC) as well as greatly improved fatigue crack propagation resistance properties, with respect to those of the neat resin equivalents. The fracture mechanisms observed under static loading and under fatigue cyclic loading are compared and discussed.  相似文献   

11.
Previously, poly(methyl methacrylate) (PMMA) was found to be almost immiscible with poly(vinyl acetate) (PVAc) regardless of tacticity of PMMA and casting solvent. Poly(vinyl phenol) (PVPh) was found successful previously in making immiscible atactic PMMA/PVAc miscible. In this investigation, tacticity effect of PMMA on a ternary composed of PMMA, PVAc and PVPh was studied. Isotactic PMMA ternary was shown to be miscible in all the studied compositions on the basis of single Tg observation. However, syndiotactic PMMA ternary demonstrated immiscibility at ca. 25% PVPh and miscibility was observed at higher PVPh concentrations. A modified Kwei equation based on the binary interaction parameters was proposed to describe the experimental Tg of the miscible ternary almost quantitatively.  相似文献   

12.
Two flame‐retardant epoxy curing agents, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐tris(4‐hydroxyphenyl)methane (1) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐ (4‐aminophenyl)‐bis(4‐hydroxyphenyl)methane (2), were prepared by a facile, economic, one‐pot procedure. The structures of the curing agents were confirmed by IR, high‐resolution mass, 1‐D, and 2‐D NMR spectra. A reaction mechanism was proposed for the preparation, and the effect of electron withdrawing/donating effects on the stabilization of the carbocation was discussed. (1‐2) served as curing agents for diglycidyl ether of bisphenol A (DGEBA), dicyclopentadiene epoxy (HP‐7200), and cresol novolac epoxy (CNE). Properties such as glass transition temperature, coefficient of thermal expansion, thermal decomposition temperature, and flame retardancy of the resulting epoxy thermosets were evaluated. The resulting epoxy thermosets show high Tg, low thermal expansion, moderate thermostability, and excellent flame retardancy. The bulky biphenylene phosphinate pendant makes polymer chains difficult to rotate, explaining the high Tg and low thermal expansion characteristic. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7898–7912, 2008  相似文献   

13.
Thiol‐click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg) due to rotational flexibility around the thioether linkages found in networks such as thiol‐ene, thiol‐epoxy, and thiol‐acrylate systems. This report explores the thiol‐maleimide reaction utilized for the first time as a solvent‐free reaction system to synthesize high‐Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tgs of thiol‐maleimide networks are compared to similarly structured thiol‐ene and thiol‐epoxy networks. While preliminary data show more heterogeneous networks for thiol‐maleimide systems, bulk materials exhibit Tgs 80 °C higher than other thiol‐click systems explored herein. Finally, hollow tubes are synthesized using each thiol‐click reaction mechanism and employed in low‐ and high‐temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol‐click systems fail mechanically.

  相似文献   


14.
The physical aging process of 4,4′-diaminodiphenylsulfone (DDS) cured diglycidyl ether bisphenol-A (DGEBA) blended with poly(ether sulfone) (PES) was studied by differential scanning calorimetry (DSC) at four aging temperatures between Tg-50°C and Tg-10°C. At aging temperatures between Tg-50 and Tg-30°C, the experimental results of epoxy resin blended with 20 wt% of PES showed two enthalpy relaxation processes. One relaxation process was due to the physical aging of PES, the other relaxation process was due to the physical aging of epoxy resin. The distribution of enthalpy relaxation process due to physical aging of epoxy resin in the blend was broader and the characteristic relaxation time shorter than those of pure epoxy resin at the above aging temperatures (between Tg-50 and Tg-30°C). At an aging temperature between Tg-30 and Tg-10°C, only one enthalpy relaxation process was found for the epoxy resin blended with PES, the relaxation process was similar to that of pure epoxy resin. The enthalpy relaxation process due to the physical aging of PES in the epoxy matrix was similar to that of pure PES at aging temperatures between Tg-50 and Tg-10°C. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
A series of hot-melt processable thermosetting compositions was prepared by blending N,N,N′,N′-tetraglycidyl-4,4′ -diaminodiphenyl-methane/4,4′-diaminodiphenylsulfone (TGMDA/DDS) epoxy resin and thermoplastic polymer powders with average particle size below 30 μm. The basic thermoplastic polymers were either a high Tg amorphous cardo polyimide (Tg=350°C) or commercial semicrystalline PA6 and PA12 polyamides. The resulting heterogeneous mixtures showed viscosity values below 5000 cps suitable for prepregging process. After cure, phase-separated morphologies were maintained with a rather limited interphase miscibility as demonstrated by thermomechanical analysis. Scanning electron microscope examination of fracture surfaces pointed out a strong adhesion between the powder particles and the surrounding polyepoxy network, particularly for the potentially reactive polyamide structures. Moreover, as shown by differential scanning calorimeter analysis, the crystallinity ratio of the PA6 and PA12 powders was lowered due to melting during thermal polymerization. The fracture toughness properties of the powder-containing materials were compared with those of a fully miscible cardo polyimide–TGMDA/DDS blend coming from an homogeneous resin composition. The best improvement in fracture energy was obtained for the powder-modified resins. The most effective composition filled with 16 wt% of powdered polyimide exhibited a fourfold increase in GIC (388 J/m2 versus 100 J/m2) without compromising the epoxy thermomechanical stability (Tg=227°C versus 223°C).  相似文献   

16.
Suitable as highly effective polymerization catalysts is the new class of donor/acceptor metallocenes in which the rotation of the two π ligands is restricted through the formation of a dative D+→A bond (see picture). Specifically optimized substitution patterns yield excellent properties for the synthesis of high-melting, highly crystalline thermoplastic materials, amorphous thermoplastic materials with high glass transition temperatures as well as polyolefin elastomers with low glass Tg.  相似文献   

17.
Epoxy molding compounds (EMCs) have become an integral component for high power electronics to work under harsh environment nowadays. For high temperature operation, polymer networks with high glass transition temperature (Tg) are required to ensure device stability. In this work, high Tg polymers were designed via controlled incorporation of in situ formed and thermally stable triazine structures into epoxy matrix. Reactions involved in the copolymer system of cyanate ester and epoxy (CE/EP) were investigated. Increasing ratio of cyanate ester dramatically promoted Tg of the copolymer up to 275 °C with improved heat resistance. High temperature aging and moisture absorption tests revealed that hydrolysis of polycyanurate network and rearrangement of cyanurate occurred during aging, especially for copolymers with higher than 75% of cyanate ester. Based on thermal properties and aging performance, the composition of CE/EP system was optimized. The formulated bisphenol A cyanate ester and biphenyl epoxy copolymer system has great potential to be applied as high temperature encapsulation materials in electronic packaging. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1337–1345  相似文献   

18.
The creep behavior of a series of fully cured epoxy resins with different crosslink densities was determined from the glassy compliance level to the equilibrium compliance Je at temperatures above Tg and at the glassy level below Tg during spontaneous densification at four aging temperatures, 4,4-diamino diphenyl sulfone DDS was used to crosslink the epoxy resins. The shear creep compliance curves J(t) obtained with materials at equilibrium densities near and above Tg were compared at their respective Tgs. Tgs from 101 to 205°C were observed for the epoxies which were based on the diglycidyl ether of bisphenol A. Creep rates were found to be the same at short times, and equilibrium compliances Je were close to the predictions of the kinetic theory of rubberlike elasticity. Time scale shift factors determined during physical aging were reduced to Tg. At compliances below 2 × 10?10 cm2/dyn, Andrade creep, where J(t) is a linear function of the cube root of creep time, was observed. The time to reach an equilibrium volume at Tg was found to be longer for the epoxy resin with lower crosslink densities. The increase of density during curing is illustrated for the epoxy resin with the highest crosslink density.  相似文献   

19.
We synthesized a novel phosphorus‐containing triamine [9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐yl‐tris(4‐aminophenyl) methane (dopo‐ta)] from the nucleophilic addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and pararosaniline chloride, using triethylamine as an acid receiver. We confirmed the structure of dopo‐ta by IR, mass, and NMR spectra and elemental analysis. dopo‐ta served as a curing agent for diglycidyl ether of bisphenol A (DGEBA) and dicyclopentadiene epoxy (hp7200). Properties such as the glass‐transition temperature (Tg), thermal decomposition temperature, flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The Tg's of cured DGEBA/dopo‐ta and hp7200/dopo‐ta were 171 and 190 °C, respectively. This high Tg phenomenon is rarely seen in the literature after the introduction of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.80 wt % for DGEBA/dopo‐ta/diamino diphenylmethane (DDM) systems and 1.46 wt % for hp7200/dopo‐ta/DDM systems. The dielectric constants for DGEBA/dopo‐ta and hp7200/dopo‐ta were 2.91 and 2.82, respectively, implying that the dopo‐ta curing systems exhibited low dielectric properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5971–5986, 2005  相似文献   

20.
Thin films of 3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexane carboxylate were UV irradiated (1.1 J cm-2) under isothermal conditions ranging from 0 to 50°C. Under these conditions the polymerization advanced quickly but only to a conversion level of less than 10% before the reaction rate slowed by more than an order of magnitude. This drop off in rate was not caused by the glass transition temperature, T g, reaching or exceeding the reaction temperature, T rxn, since the epoxide's T g remained at least 40°C below T rxn. Raising the sample temperature above 60°C caused a sharp increase in the conversion level. At 100°C conversion exceeds 80% and the ultimate T g approaches 190°C. The addition of 10 mass% 1,6-hexanediol, HD, to the epoxy caused the conversion at room temperature to quintuple over the level obtained without the alcohol present. The heat liberated from this alcohol epoxy blend during cure on a UV conveyor belt system caused the sample's temperature to increase by about 100°C above ambient whereas the epoxy alone under these conditions only experienced a modest temperature rise of about 26°C. If the amount of HD in the blend is increased above 10% the heat of reaction at 23°C decreases due to HD being trapped in a nonreactive crystalline phase. Boosting reaction temperatures above 50°C melts the HD crystals and yields significantly improved conversion ratios. As the level of alcohol blended with the epoxy is raised its ultimate T g is lowered and when the concentration of alcohol in the blend nears 30 mass%T g drops below room temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号