首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersed fluorescence (DF) spectra of the 7-azaindole dimer (7AI2) and deuterated dimers 7AI2-hd and 7AI2-dd, where hd and dd indicate the deuteration of an imino proton and two imino protons, have been measured in a supersonic free jet expansion. The undeuterated 7AI2-hh dimer exhibits only the tautomer fluorescence, but both the normal and tautomer fluorescence have been detected by exciting the origins of 7AI2-h*d, 7AI2-hd* and 7AI2-dd in the S1-S0 region, where h* and d* indicate the localization of the excitation on 7AI-h or 7AI-d moiety. The DF spectra indicate that 7AI2-h*d and 7AI2-hd* undergo excited-state proton/deuteron transfer (ESPDT), while excited-state double-deuteron transfer (ESDDT) occurs in 7AI2-dd. The H/D kinetic isotopic effects on ESDPT have been investigated by measuring the intensity ratios of the normal fluorescence to the tautomer fluorescence. The ESPDT rate is about 1/60th of the ESDPT rate, and the ESDDT rate is about 1/12th of the ESPDT rate, where ESPDT rate is an average of the rates for 7AI2-h*d and 7AI2-hd*. The observed H/D kinetic isotope effects imply that the ESDPT reaction of 7AI2 has a "cooperative" nature; i.e., the motion of the two moving protons strongly couples each other through the electron motions. The difference in the estimated ESPDT reaction rates, 9.8 x 10(9) and 6.9 x 109 s(-1) for 7AI2-h*d and 7AI2-hd*, respectively, is consistent with the concerted mechanism rather than the stepwise mechanism.  相似文献   

2.
Dimers of free nucleobases with their conjugate acid ions can be assigned to either of two categories: protonated dimers or proton-bound dimers. In the former, the extra proton attaches to a lone pair of a neutral dimer. In the latter, the extra proton is situated between two lone pairs and participates in a proton bridge. In general, proton-bound dimers are found to be more tightly held together than protonated dimers. While neutral adenine and its isomer 8-aminopurine (C(5)H(5)N(5)) are substantially more stable than their 7H tautomers, their conjugate acid ions and those of their respective 7H tautomers have nearly the same heats of formation. Correspondingly, the most stable (C(5)H(5)N(5))2H+ structures contain 7H tautomers as the neutral partner. Proton transit from one partner to the other within the most stable protonated dimer of 8-aminopurine has a low barrier (6 kJ mol(-1)). The potential energy curve for the NH stretch in that case is better fitted as a double minimum rather than as a harmonic potential. Purine-purine mismatches have been observed in nucleic acids, to which calculated (C(5)H(5)N(5))2H+ dimer geometries appear nearly isosteric.  相似文献   

3.
The concerted double proton transfer undergone by the C(2)(h) dimer of 7-azaindole upon electronic excitation has also been reported to occur in 3-methyl-7-azaindole monocrystals and in dimers of this compound under free-jet conditions. However, the results obtained in this work for the 3-methyl-7-azaindole dimer formed in a 10(-4) M solution of the compound in 2-methylbutane suggest that the dimer produces no fluorescent signal consistent with a double proton transfer in the liquid phase or in a matrix. In this paper, the spectroscopic behavior of the doubly hydrogen bonded dimer of 3-methyl-7-azaindole is shown to provide a prominent example of molecular symmetry control over the spectroscopy of a substance. This interpretation opens up a new, interesting research avenue for exploring the ability of molecular symmetry to switch between proton-transfer mechanisms. It should be noted that symmetry changes in the 3-methyl-7-azaindole dimer are caused by an out-of-phase internal rotation of the two methyl groups.  相似文献   

4.
The intermolecular interaction energy of the toluene dimer has been calculated with the ARS-F model (a model chemistry for the evaluation of intermolecular interaction energy between ARomatic Systems using Feller's method), which was formerly called as the AIMI model III. The CCSD(T) (coupled cluster calculations with single and double substitutions with noniterative triple excitations) interaction energy at the basis set limit has been estimated from the second-order Moller-Plesset perturbation interaction energy at the basis set limit obtained by Feller's method and the CCSD(T) correction term obtained using a medium-size basis set. The cross (C(2)) dimer has the largest (most negative) interaction energy (-4.08 kcal/mol). The antiparallel (C(2h)) and parallel (C(S)) dimers (-3.77 and -3.41 kcal/mol, respectively) are slightly less stable. The dispersion interaction is found to be the major source of attraction in the toluene dimer. The dispersion interaction mainly determines the relative stability of the stacked three dimers. The electrostatic interaction of the stacked three dimers is repulsive. Although the T-shaped and slipped-parallel benzene dimers are nearly isoenergetic, the stacked toluene dimers are substantially more stable than the T-shaped toluene dimer (-2.62 kcal/mol). The large dispersion interaction in the stacked toluene dimers is the cause of their enhanced stability.  相似文献   

5.
Mass spectrometry-based methods have been employed in order to study the reactions of non- (h(6)/h(6)), half (d(6)/h(6)), and fully (d(6)/d(6)) deuterium labeled protonated dimers of acetone in the gas phase. Neither kinetic nor thermodynamic isotope effects were found. From MIKES experiments (both spontaneous and collision-induced dissociations), it was found that the relative ion yield (m/z 65 vs m/z 59) from the dissociation reaction of half deuterium labeled (d(6)/h(6)) protonated dimer of acetone is dependent on the internal energy. A relative ion yield (m/z 65 vs m/z 59) close to unity is observed for cold, nonactivated, metastable ions, whereas the ion yield is observed to increase (favoring m/z 65) when the pressure of the collision gas is increased. This is in striking contrast to what would be expected if a kinetic isotope effect were present. A combined study of the kinetics and the thermodynamics of the association reaction between acetone and protonated acetone implicates the presence of at least two isomeric adducts. We have employed G3(MP2) theory to map the potential energy surface leading from the reactants, acetone and protonated acetone, to the various isomeric adducts. The proton-bound dimer of acetone was found to be the lowest-energy isomer, and protonated diacetone alcohol the next lowest-energy isomer. Protonated diacetone alcohol, even though it is an isomer hidden behind many barriers, can possibly account for the observed relative ion yield and its dependence on the mode of activation.  相似文献   

6.
The time-slice velocity-map ion imaging and the resonant four-wave mixing techniques are combined to study the photodissociation of NO in the vacuum ultraviolet (VUV) region around 13.5 eV above the ionization potential. The neutral atoms, i.e., N((2)D(o)), O((3)P(2)), O((3)P(1)), O((3)P(0)), and O((1)D(2)), are probed by exciting an autoionization line of O((1)D(2)) or N((2)D(o)), or an intermediate Rydberg state of O((3)P(0,1,2)). Old and new autoionization lines of O((1)D(2)) and N((2)D(o)) in this region have been measured and newer frequencies are given for them. The photodissociation channels producing N((2)D(o)) + O((3)P), N((2)D(o)) + O((1)D(2)), N((2)D(o)) + O((1)S(0)), and N((2)P(o)) + O((3)P) have all been identified. This is the first time that a single VUV photon has been used to study the photodissociation of NO in this energy region. Our measurements of the angular distributions show that the recoil anisotropy parameters (β) for all the dissociation channels except for the N((2)D(o)) + O((1)S(0)) channel are minus at each of the wavelengths used in the present study. Thus direct excitation of NO by a single VUV photon in this energy region leads to excitation of states with Σ or Δ symmetry (ΔΩ = ±1), explaining the observed perpendicular transition.  相似文献   

7.
Spectra of ethylene dimers and trimers are studied in the ν(11) fundamental band region of C(2)D(4) (≈2200 cm(-1)) using a tuneable quantum cascade laser to probe a pulsed supersonic slit jet expansion. The dimer spectrum is that of a prolate symmetric top perpendicular band, with a distinctive appearance because the A rotational constant is almost exactly equal to six times the B constant. The analysis supports the previously determined cross-shaped dimer structure with D(2d) symmetry. An ethylene trimer has not previously been observed with rotational resolution. The spectrum is that of an oblate symmetric top parallel band. It leads to a proposed trimer structure which is barrel shaped and has C(3h) or C(3) symmetry, with the ethylene monomer C-C axes approximately aligned along the trimer symmetry axis.  相似文献   

8.
The dissociation kinetics of protonated n-acetyl-L-alanine methyl ester dimer (AcAlaME(d)), imidazole dimer, and their cross dimer were measured using blackbody infrared radiative dissociation (BIRD). Master equation modeling of these data was used to extract threshold dissociation energies (E(o)) for the dimers. Values of 1.18 +/- 0.06, 1.11 +/- 0.04, and 1.12 +/- 0.08 eV were obtained for AcAlaME(d), imidazole dimer, and the cross dimer, respectively. Assuming that the reverse activation barrier for dissociation of the ion-molecule complex is negligible, the value of E(o) can be compared to the dissociation enthalpy (DeltaH(d) degrees ) from HPMS data. The E(o) values obtained for the imidazole dimer and the cross dimer are in agreement with HPMS values; the value for AcAlaME(d) is somewhat lower. Radiative rate constants used in the master equation modeling were determined using transition dipole moments calculated at the semiempirical (AM1) level for all dimers and compared to ab initio (RHF/3-21G*) calculations where possible. To reproduce the experimentally measured dissociation rates using master equation modeling, it was necessary to multiply semiempirical transition dipole moments by a factor between 2 and 3. Values for transition dipole moments from the ab initio calculations could be used for two of the dimers but appear to be too low for AcAlaME(d). These results demonstrate that BIRD, in combination with master equation modeling, can be used to determine threshold dissociation energies for intermediate size ions that are in neither the truncated Boltzmann nor the rapid energy exchange limit.  相似文献   

9.
Ab initio and density functional theory (DFT) methods have been applied to study the structures and kinetic stabilities of the possible products of the reactions of mononuclear nickel with (N(2))(x) (x = 1-4). Energy analyses show that end-on bound Ni(N(2))(x) (x = 1-4) complexes are preferred to side-on and N(4) bound ones. Several decomposition and isomerization pathways for Ni(N(2))(x) (x = 2-4) were investigated at the B3LYP/6-31G level of theory. The present study suggests that besides the four experimentally assigned complexes (NiN(2) (C(infinity)(v)), Ni(N(2))(2) (D(infinity)(h)), Ni(N(3))(2) (D(3)(h)), and Ni(N(2))(4) (T(d))), another two complexes (Ni(N(2))(4) (C(2)(v)) and Ni(N(2))(4) (D(4)(d))) are likely to be kinetically stable, while other complexes may be kinetically unstable with barrier heights of less than 30 kcal/mol. The present study also suggests that side-on bound N(2) ligand is ready to transform into the end-on bound one, while N(4) ligand is hard to transform into side-on or end-on bound N(2) ligand.  相似文献   

10.
11.
The reaction between {(Me(3)Si)(2)CH}PCl(2) (4) and one equivalent of either [C(6)H(4)-2-NMe(2)]Li or [2-C(5)H(4)N]ZnCl, followed by in situ reduction with LiAlH(4) gives the secondary phosphanes {(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))PH (5) and {(Me(3)Si)(2)CH}(2-C(5)H(4)N)PH (6) in good yields as colourless oils. Metalation of 5 with Bu(n)Li in THF gives the lithium phosphanide [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Li(THF)(2)] (7), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Na(tmeda)] (8) and [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]K(pmdeta)] (9) after recrystallization in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N',N'-pentamethyldiethylenetriamine]. The pyridyl-functionalized phosphane 6 undergoes deprotonation on treatment with Bu(n)Li to give a red oil corresponding to the lithium compound [{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Li (10) which could not be crystallized. Treatment of this oil with NaOBu(t) gives the sodium derivative [{[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Na}(2) x (Et(2)O)](2) (11), whilst treatment of with KOBu(t), followed by recrystallization in the presence of pmdeta gives the complex [[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]K(pmdeta)](2) (12). Compounds 5-12 have been characterised by (1)H, (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy and elemental analyses; compounds 7-9, and 12 have additionally been characterised by X-ray crystallography. Compounds 7-9 crystallize as discrete monomers, whereas 11 crystallizes as an unusual dimer of dimers and 12 crystallizes as a dimer with bridging pyridyl-phosphanide ligands.  相似文献   

12.
The CCSD(T) level interaction energies of eight orientations of nitrobenzene-benzene complexes and nine orientations of nitrobenzene dimers at the basis set limit have been estimated. The calculated interaction energy of the most stable slipped-parallel (C(s)) nitrobenzene-benzene complex was -4.51 kcal/mol. That of the most stable slipped-parallel (antiparallel) (C(2h)) nitrobenzene dimer was -6.81 kcal/mol. The interaction energies of these complexes are significantly larger than that of the benzene dimer. The T-shaped complexes are substantially less stable. Although nitrobenzene has a polar nitro group, electrostatic interaction is always considerably weaker than the dispersion interaction. The dispersion interaction in these complexes is larger than that in the benzene dimer, which is the cause of the preference of the slipped-parallel orientation in these complexes.  相似文献   

13.
The 2-aminopyridine2-pyridone (2AP2PY) dimer is linked by N-H...O=C and N-H...N hydrogen bonds, providing a model for the Watson-Crick hydrogen bond configuration of the adenine.thymine and adenine.uracil nucleobase pairs. Mass-specific infrared spectra of 2AP2PY and its seven N-H deuterated isotopomers have been measured between 2550 and 3650 cm(-1) by IR laser depletion combined with UV two-color resonant two-photon ionization. The 2PY amide N-H stretch is a very intense band spread over the range 2700-3000 cm(-1) due to large anharmonic couplings. It is shifted to lower frequency by 710 cm(-1) or approximately 20% upon H bonding to 2AP. On the 2AP moiety, the "bound" amino N-H stretch gives rise to a sharp band at 3140 cm(-1), which is downshifted by 354 cm(-1) or approximately 10% upon H bonding to 2PY. The amino group "free" N-H stretch and the H-N-H bend overtone are sharp bands at approximately 3530 cm(-1) and 3320 cm(-1). Ab initio structures and harmonic vibrations were calculated at the Hartree-Fock level and with the PW91 and B3LYP density functionals. The PW91/6-311++G(d,p) method provides excellent predictions for the frequencies and IR intensities of all the isotopomers.  相似文献   

14.
Multiple techniques have been used to delineate the self-assembly of a bis(pyrrole) Schiff base derivative (compound 4, C(16)H(14)N(4)), which forms an unusual dimer through complementary N-H...N=C hydrogen bonds between twisted, C2-symmetric monomer units. The asymmetric unit of the crystal structure comprises one and a half dimer units, with one dimer exhibiting approximate D2 point-group symmetry and the other exact D2 symmetry (space group C2/c). The dimers pack into columns whose axes are collinear with the a axis of the unit cell. The columns assemble into discrete layers with two distinct types of hydrogen-sized voids residing between the layers. Despite the promising architecture of the voids within the lattice of 4, the absence of genuine channels to interconnect the voids precludes the uptake of hydrogen gas, even at elevated pressures (10 bar). AM1 calculations of the structure of dimeric 4 indicate that self-recognition through hydrogen bonding depends primarily on favorable electrostatic interactions. The potential-energy surface for monomeric 4 mapped by counter-rotation of an adjacent pair of C=C-N=C torsion angles indicates that the X-ray structures of the four monomeric units are global minima with highly nonplanar conformations that are preorganized for self-recognition by hydrogen bonding. The in vacuo enthalpy of association for the dimer was calculated to be significantly exergonic (DeltaG(assoc)=-21.9 kJ mol(-1), 298 K) and in excellent agreement with that determined by 1H NMR spectroscopy in CDCl3 (DeltaG(assoc)=-16.6(4) kJ mol(-1), 298 K). Using population and bond order analyses, in conjunction with the conformation dependence of the frontier MO energies, we have been able to show that pi-electron delocalization is only marginally diminished in the nonplanar conformers of 4 and that the electronic structures of the constituent monomers of the dimer are well mixed.  相似文献   

15.
We report here the laser induced fluorescence excitation (FE) and dispersed fluorescence (DF) spectra of a 1:1 mixed dimer between 7-azaindole (7AI) and 2-pyridone (2PY) measured in a supersonic free jet expansion of helium. Density functional theoretical calculation at the B3LYP/6-311++G** level has been performed for predictions of the dimer geometry and normal mode vibrational frequencies in the ground electronic state. A planar doubly hydrogen-bonded structure has been predicted to be the most preferred geometry of the dimer. In the FE spectrum, sharp vibronic bands are observed only for excitation of the 2PY moiety. A large number of low-frequency vibronic bands show up in both the FE and DF spectra, and those bands have been assigned to in-plane hydrogen bond vibrations of the dimer. Spectral analyses reveal Duschinsky-type mixing among those modes in the excited state. No distinct vibronic band structure in the FE spectrum was observed corresponding to excitations of the 7AI moiety, and the observation has been explained in terms of nonradiative electronic relaxation routes involving the 2PY moiety.  相似文献   

16.
The structure and vibrational spectra of hexamethylpyrromethene (HMPM) have been investigated by X-ray crystallography, IR and Raman spectroscopies, and density functional theory calculations. HMPM crystallizes in the form of dimers, which are held together by bifurcated N-H(...N)(2) hydrogen bonds, involving one intramolecular and one intermolecular N-H...N interaction. The monomers are essentially planar, and the mean planes of the monomers lie approximately perpendicular to one another, so that the four N atoms in the dimer form a distorted tetrahedron. The structure of the HMPM dimer is well-reproduced by B3LYP/6-31G calculations. A comparison of the calculated geometry of the dimer with that of the monomer reveals only small changes in the N-H...N entity and the methine bridge angles upon dimerization. These are a result of weakening of the intramolecular N-H...N hydrogen bond and the formation of a more linear N-H...N intermolecular hydrogen bond. Using an empirical relation between the shift of the N-H stretching frequency of pyrrole and the enthalpy of adduct formation with bases [Nozari, M. S.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 7086-7090], estimates of the strength of the intra- and intermolecular hydrogen bonds are obtained. IR and Raman spectroscopies of HMPM and its isotopomers deuterated at the pyrrolic nitrogen atom and at the methine bridge reveal that the molecule is monomeric in nonpolar organic solvents but dimeric in a solid Ar matrix and in KBr pellets. The matrix IR spectra show a splitting of vibrational modes for the dimer, particularly those involving the N-H coordinates. Due to intrinsic deficiencies of the B3LYP/6-31G approximation, a satisfactory reproduction of these modes of the monomeric and dimeric HMPM requires specific adjustments of the NH scaling factors for the calculated force constants and, in the case of the NH out-of-plane modes of HMPM dimers, also of intra- and intermolecular coupling constants. This parametrization does not significantly affect the other calculated modes, which in general reveal a very good agreement with the experimental data.  相似文献   

17.
Florio GM  Sibert EL  Zwier TS 《Faraday discussions》2001,(118):315-30; discussion 361-71
The IR spectra of three isotopomers of the benzoic acid dimer have been recorded under jet-cooled conditions using the double resonance method of fluorescence-dip IR spectroscopy. In so doing, the spectra are assuredly due exclusively to dimers in the ground-state zero-point level at a rotational temperature of 3-5 K. Even under these conditions, the three isotopomers have remarkably broad spectra, extending from 2600 to almost 3150 cm-1. The spectra show extensive substructure consisting of some 15-20 transitions where only a single OH stretch fundamental should appear in the harmonic limit. The comparison of the undeuterated d0-d0 dimer with the ring-deuterated d5-d5 dimer tests the effect of mixing with the C-H stretches and overtones of the C-H bends. The mixed OH/OD ring-deuterated d6-d5 dimer shifts the frequency and changes the form of the OH stretch normal mode. The analogous OH stretch IR spectrum of the d0-d0 dimer out of the S1 excited-state zero-point level has also been recorded. In this case, much of the closely-spaced substructure is not apparent. What remains is a set of three bands separated from one another by about 180 cm-1. Preliminary results of model calculations of the anharmonic coupling, responsible for the broadening and substructure, are presented. These calculations indicate that it is OH stretch-OH bend coupling, rather than coupling with the intermolecular stretch, that is responsible for much of the observed structure and breadth.  相似文献   

18.
Vibrational energy relaxation (VER) of the Fermi polyads in the CH stretching vibration of the benzene dimer (Bz(2)) and trimer (Bz(3)) has been investigated by picosecond (ps) time-resolved IR-UV pump-probe spectroscopy in a supersonic beam. The vibrational bands in the 3000-3100 cm(-1) region were excited by a ps IR pulse and the time evolutions at the pumped and redistributed (bath) levels were probed by resonance enhanced multiphoton ionization with a ps UV pulse. For Bz(2), a site-selective excitation in the T-shaped structure was achieved by using the isotope-substituted heterodimer hd, where h = C(6)H(6) and d = C(6)D(6), and its result was compared with that of hh homodimer. In the hd heterodimer, the two isomers, h(stem)d(top) and h(top)d(stem), show remarkable site-dependence of the lifetime of intracluster vibrational energy redistribution (IVR); the lifetime of the Stem site [h(stem)d(top), 140-170 ps] is ~2.5 times shorter than that of the Top site [h(top)d(stem), 370-400 ps]. In the transient UV spectra, a broad electronic transition due to the bath modes emerges and gradually decays with a nanosecond time scale. The broad transition shows different time profile depending on UV frequency monitored. These time profiles are described by a three-step VER model involving IVR and vibrational predissociation: initial → bath1(intramolecular) → bath2(intermolecular) → fragments. This model also describes well the observed time profile of the Bz fragment. The hh homodimer shows the stepwise VER process with time constants similar to those of the hd dimer, suggesting that the excitation-exchange coupling of the vibrations between the two sites is very weak. Bz(3) also exhibited the stepwise VER process, though each step is faster than Bz(2).  相似文献   

19.
Mid-infrared photodissociation spectra of mass selected C(3)H(3)(+)-N(2) ionic complexes are obtained in the vicinity of the C-H stretch fundamentals (2970-3370 cm(-1)). The C(3)H(3)(+)-N(2) dimers are produced in an electron impact cluster ion source by supersonically expanding a gas mixture of allene, N(2), and Ar. Rovibrational analysis of the spectra demonstrates that (at least) two C(3)H(3)(+) isomers are produced in the employed ion source, namely the cyclopropenyl (c-C(3)H(3)(+)) and the propargyl (H(2)CCCH(+)) cations. This observation is the first spectroscopic detection of the important c-C(3)H(3)(+) ion in the gas phase. Both C(3)H(3)(+) cations form intermolecular proton bonds to the N(2) ligand with a linear -C-H...N-N configuration, leading to planar C(3)H(3)(+)-N(2) structures with C(2v) symmetry. The strongest absorption of the H(2)CCCH(+)-N(2) dimer in the spectral range investigated corresponds to the acetylenic C-H stretch fundamental (v(1) = 3139 cm(-1)), which experiences a large red shift upon N(2) complexation (Delta(v1) approximately -180 cm(-1)). For c-C(3)H(3)(+)-N(2), the strongly IR active degenerate antisymmetric stretch vibration (v4)) of c-C(3)H(3)(+) is split into two components upon complexation with N(2): v4)(a(1)) = 3094 cm(-1) and v4)(b(2)) = 3129 cm(-1). These values bracket the yet unknown v4) frequency of free c-C(3)H(3)(+) in the gas phase, which is estimated as 3125 +/- 4 cm(-1) by comparison with theoretical data. Analysis of the nuclear spin statistical weights and A rotational constants of H(2)CCCH(+)-N(2) and c-C(3)H(3)(+)-N(2) provide for the first time high-resolution spectroscopic evidence that H(2)CCCH(+) and c-C(3)H(3)(+) are planar ions with C(2v) and D(3h) symmetry, respectively. Ab initio calculations at the MP2(full)/6-311G(2df,2pd) level confirm the given assignments and predict intermolecular separations of R(e) = 2.1772 and 2.0916 A and binding energies of D(e) = 1227 and 1373 cm(-1) for the H-bound c-C(3)H(3)(+)-N(2) and H(2)CCCH(+)-N(2) dimers, respectively.  相似文献   

20.
Chelation and aggregation in phenyllithium reagents with potential 6- and 7-ring chelating amine (2, 3) and 5-, 6-, and 7-ring chelating ether (4, 5, 6) ortho substituents have been examined utilizing variable temperature (6)Li and (13)C NMR spectroscopy, (6)Li and (15)N isotope labeling, and the effects of solvent additives. The 5- and 6-ring ether chelates (4, 5) compete well with THF, but the 6-ring amine chelate (2) barely does, and 7-ring amine chelate (3) does not. Compared to model compounds (e.g., 2-ethylphenyllithium 7), which are largely monomeric in THF, the chelated compounds all show enhanced dimerization (as measured by K = [D]/[M](2)) by factors ranging from 40 (for 6) to more than 200 000 (for 4 and 5). Chelation isomers are seen for the dimers of 5 and 6, but a chelate structure could be assigned only for 2-(2-dimethylaminoethyl)phenyllithium (2), which has an A-type structure (both amino groups chelated to the same lithium in the dimer) based on NMR coupling in the (15)N, (6)Li labeled compound. Unlike the dimer, the monomer of 2 is not detectably chelated. With the exception of 2-(methoxymethyl)phenyllithium (4), which forms an open dimer (12) and a pentacoordinate monomer (13), the lithium reagents all form monomeric nonchelated adducts with PMDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号