共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>研究了缀饰格子中的量子自旋霍尔效应,模型中同时考虑了Rashba自旋轨道耦合和交换场的作用.缀饰格子具有简立方对称性,以零能平带和单狄拉克锥结构为主要特点.在缀饰格子中,不论是实现量子自旋霍尔效应还是量子反常霍尔效应,都需要一个不为零的内禀自旋轨道耦合作用来打开一个完全的体能隙,这与石墨烯等六角格子模型有着很大的不同.在交换场破坏了时间反演对称性的情况下,以自旋陈数为标志的量子自旋霍尔效应仍然能够存在,边缘态和极化率的相关结果也证明了这一结论.结果表明自旋陈数比z2拓扑数在表征量子自旋霍尔效应方面有着更广泛的适用范围,相应的结论为利用磁场控制量子自旋霍尔效应提出了一个理论模型和依据. 相似文献
2.
文章作者在垂直磁场作用下的铁磁石墨烯体系里预言了一种新类型的量子自旋霍尔效应.这量子自旋霍尔效应与自旋轨道耦合无关,体系也不具有时间反演不变性;但是有CT不变(C为电子-空穴变换、T为时间反演变换).由于量子自旋霍尔效应,体系的纵向电阻和自旋霍尔阻出现量子化平台.特别是,自旋霍尔阻的量子化平台有很强的抗杂质干扰能力. 相似文献
3.
文章作者在垂直磁场作用下的铁磁石墨烯体系里预言了一种新类型的量子自旋霍尔效应.这量子自旋霍尔效应与自旋轨道耦合无关,体系也不具有时间反演不变性;但是有CT不变(C为电子-空穴变换、T为时间反演变换).由于量子自旋霍尔效应,体系的纵向电阻和自旋霍尔阻出现量子化平台.特别是,自旋霍尔阻的量子化平台有很强的抗杂质干扰能力. 相似文献
4.
电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等. 相似文献
5.
6.
Su-Schreiffer-Heeger模型预测了在一维周期晶格的边缘处可能出现零维的拓扑零能模,其能量本征值总是出现在能隙的正中间.本文以半导体微腔阵列中光子和激子在强耦合情况下形成的准粒子为例,通过准粒子的自旋轨道耦合与Zeeman效应,研究了时间反演对称性破缺对拓扑零能模的影响.发现拓扑零能模的能量本征值可以随着自旋轨道耦合强度的变化在整个带隙内移动,自旋相反的模式移动方向相反;在二维微腔阵列中发现了沿着晶格边缘移动的拓扑零能模,提出了一维零能模的概念.由于时间反演对称性的破缺,这种一维拓扑零能模解除了在相反传输方向上的能级的简并,从而在传输过程中出现极强的绕过障碍物的能力. 相似文献
7.
8.
9.
量子自旋霍尔效应通常存在于二维拓扑绝缘体中,其具有受拓扑保护的无耗散螺旋边界态. 2014年,理论预言单层1T’相过渡金属硫族化合物是一类新型的二维量子自旋霍尔绝缘体.其中,以单层1T’-WTe2为代表的材料体系具有原子结构稳定、体带隙显著、拓扑性质易于调控等许多独特的优势,对低功耗自旋电子器件的发展具有重要的意义.本文总结了单层1T’-WTe2在实验上的最新进展,包括基于分子束外延生长的材料制备,螺旋边界态的探测及其对磁场的响应,掺杂、应力等手段在单层1T’-WTe2中诱导出的新奇量子物态等.也对单层1T’-WTe2未来可能的应用前景进行了展望. 相似文献
10.
量子反常霍尔效应被认为是已知的拓扑量子效应中最有希望获得广泛实际应用的一个。阻碍其应用的主要障碍是其很低的实现温度。文章介绍了在磁性拓扑绝缘体中量子反常霍尔效应的机理和决定其实现温度的因素,回顾了过去几年在提高量子反常霍尔效应实现温度方面的研究进展,尤其是最近内禀磁性拓扑绝缘体MnBi2Te4的相关工作。在此基础上提出在磁性拓扑绝缘体系统中进一步提高量子反常霍尔效应温度的路线图。
相似文献11.
光束在经过非均匀介质后,自旋角动量相反(左、右旋圆偏振)的光子在垂直于入射面的横向相互分离,造成光束的自旋分裂,这种现象叫做光自旋霍尔效应.它类似于电子系统中的自旋霍尔效应:自旋光子扮演自旋电子的角色,而折射率梯度则起外场作用.光自旋霍尔效应为操控光子提供了新的途径,在纳米光学、量子信息和半导体物理方面具有重要的应用前景;同时由于它与凝聚态和高能物理中的带电粒子自旋霍尔效应有高度的相似性和共同的拓扑根源,所以又为测量自旋霍尔效应这类弱拓扑现象提供了独特而又方便的机会.文章简单介绍了光自旋霍尔效应,并总结了近几年国内外的研究进展. 相似文献
12.
13.
在没有外加磁场的作用下就能表现出量子化霍尔电导的量子反常霍尔效应已经成为霍尔家族中的重要一员,其物理起源是体能带反转结构和铁磁性相互作用.量子反常霍尔效应最重要的表现是在边缘态处具有无耗散运动的手性电流,这种性质拥有可以改变未来量子电子学的潜力,极大推动器件小型化、低损耗、高速率发展.近年来,基于理论指导,人们在实验上已多次观察到量子反常霍尔效应.在本文中,从实验层面上重点回顾了量子反常霍尔效应在铬(Cr)、钒(V)掺杂的(Bi, Sb)2Te3体系的研究进展,以及目前量子反常霍尔效应在其它体系中的研究现状,深入理解量子反常霍尔效应的起源和机理,最后对量子反常霍尔效应进行总结和展望. 相似文献
14.
基于量子自旋霍尔或谷霍尔效应的拓扑光子结构具有对缺陷免疫和抑制背向散射的特性,对设计新型低损耗的光子器件起到了关键作用.本文巧妙设计了一种具有时间反演对称性的二维电介质光子晶体,实现了量子自旋霍尔效应和量子谷霍尔效应的共存.首先基于蜂巢结构排布的硅柱经过收缩扩张,打开了布里渊区Γ点的四重简并点形成拓扑平庸或非平庸的光子带隙,实现量子自旋霍尔效应.经过扩张后的蜂巢晶格演化成为Kagome结构,之后在Kagome晶格中加入正负扰动,打破光子晶体的空间反演对称性,导致布里渊区的非等价谷K和K′的简并点打开并出现完整带隙,实现了量子谷霍尔效应.数值计算结果表明,由拓扑平庸与非平庸、正扰动与负扰动的光子晶体组成的界面上可实现单向传输且对弯曲免疫的拓扑边缘态.最后,设计了基于两种效应共存的四通道系统,此系统为光学编码与稳健信号传输提供潜在方法,为电磁波的操纵提供了更大的灵活性. 相似文献
15.
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov-Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。 相似文献
16.
半导体中自旋轨道耦合及自旋霍尔效应 总被引:1,自引:0,他引:1
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。 相似文献
17.
拓扑绝缘体是当前凝聚态物理研究的热点.退相干效应对该体系的影响的研究不仅有重要的理论意义,而且也是实现未来量子器件的不可或缺的前期工作.文章作者从理论上研究了退相干对二维拓扑绝缘体特别是量子自旋霍尔效应的影响.研究结果表明,作为量子自旋霍尔效应的标志的量子化纵向电阻平台对不破坏自旋记忆的退相干效应(普通退相干)不敏感,但却对破坏自旋记忆的退相干效应(自旋退相干)非常敏感.因此,该量子化平台只能在尺寸小于自旋退相干长度的介观样品中存在,从而解释了量子自旋霍尔效应实验中所观测到的结果(见Science,2007,318:766).同时,文章作者还定义了一个新的物理量,即自旋霍尔电阻,并发现该自旋霍尔电阻也有量子化平台.特别是该量子化平台对两种类型的退相干都不敏感.这说明在宏观样品中也能观测到自旋霍尔电阻的量子化平台,因此更能全面地反映量子自旋霍尔效应的拓扑特性. 相似文献
18.
用数值方法研究了拓扑绝缘体薄膜体系在外加垂直磁场 作用下其边缘态的性质. 磁场的加入通过耦合k+eA, 即Peierls势替换关系和 该作用导致的Zeeman交换场体现在哈密顿量中. 考虑窄条圆环状结构的二维InAs/GaSb/AlSb薄膜量子阱材料, 当其处于拓扑非平庸状态, 即量子自旋霍尔态时, 会出现受时间反演对称性保护的两支简并边缘态, 而在垂直磁场的作用下, 时间反演对称性被破坏, 这时能带将形成一条条的朗道能级, 原来简并的两支边缘态也会分开到朗道能级谱线的两侧, 从电子态密度的空间分布情况则可以看到边缘态分别局域在材料的两个边界. 随着磁场的增大, 位于同一边界上的不同 自旋极化的边缘态将出现分离: 一支仍然局域在边缘, 另一支则随外加磁场的增加而有逐渐演化到材料内部的趋势. 文中还计算了同一边界上的两支边缘态之间的散射, 结果表明由于两个边缘态在空间发生分离, 相互之间的散射被很大的压制, 得到了其散射随磁场增加没有明显变化的结论, 所以磁场并不会增强散射过程, 也没有破坏体拓扑材料的性质, 说明了量子自旋霍尔态在没有时间反演对称的情况下也可以有较强的稳定性. 相似文献
19.
光自旋霍尔效应是由于光子的自旋-轨道相互作用导致自旋相反的光子相互分离的光学效应,极大地丰富了光学研究内涵,成为现代光学的研究前沿和热点.由于光自旋霍尔效应实验与由偏振片、望远镜、显微镜等器件组装的实验相通,因此可以把光自旋霍尔效应的研究成果进行整理,设计制作出适合于本科实验教学的仪器.本文对光自旋霍尔效应的研究进展进行了综述,并介绍了利用所开发的光自旋霍尔效应实验仪可开展的实验类型和进行研究性教学的情况. 相似文献
20.
从理论上和实验上研究了转换反射中光自旋霍尔效应的自旋堆积方向的方法,建立了描述光束在空气-棱镜界面反射的自旋堆积模型,揭示了横移与光束入射偏振角的定性关系。研究发现,当入射角小于布儒斯特角时,随着入射偏振角的逐渐增大,自旋堆积的方向发生反转。而当入射角大于布儒斯特角时,自旋堆积的方向不再随入射偏振角的变化而反转。结果表明,在光束入射角为确定值且小于布儒斯特角的情况下,可以通过调控光束的入射偏振角转换自旋堆积的方向。转换自旋堆积方向的研究为有效调控光自旋霍尔效应提供了新的途径。 相似文献