首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an efficient synthesis of chiral (2S)-ethylhexanol for functionalizing and solubilizing conjugated polymers. The alpha-substituted chiral ethylhexyl side chains were obtained through a powerful and flexible asymmetric synthesis using pseudoephedrine as a chiral auxiliary. The dependence of the properties of conjugated polymers on molecular structure is investigated by circular dichroism, fluorescence, and absorption spectroscopy on two new chiral conjugated polymers, poly(3,3-bis((S)-2-ethylhexyl)-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT((2S)-ethylhexyl)(2)) and poly(3,3-bis((S)-2-methylbutyl)-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT((2S)-methylbutyl)(2)). The properties of PProDOT((2S)-ethylhexyl)(2)) differ significantly from those of its methylbutyl analog as investigated by chiral aggregation providing insight into the role of interchain interactions in these subsecond switching electrochromic polymers.  相似文献   

2.
Abstract

Two novel thiadiazoloquinoxaline and benzodithiophene (BDT) bearing copolymers were designed and synthesized. Different BDT units (alkoxy and thiophene substituted) were used as donor materials and the effect of alkoxy and thiophene substitution on the electrochemical, spectroelectrochemical and photovoltaic properties were investigated. Both polymers exhibited low oxidation potentials at around 0.90 V and low optical band gaps at around 1.00?eV due to the insertion of electron poor thiadiazoloquinoxaline unit into the polymer backbone. Both P1 (poly-6,7-bis(3,4-bis(decyloxy)phenyl)-4-(4,8-bis(nonan-3-yloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) and P2 (poly- 4-(4,8-bis(5-(nonan-3-yl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen-2-yl)-6,7-bis(3,4-bis(decyloxy)phenyl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) exhibited multichromic behavior with different tones of greenish yellow and gray in the neutral and fully oxidized states, respectively. In addition, both polymers revealed very high optical contrasts (~87%) in the NIR region which make these promising polymers good candidates for NIR applications. Finally, in order to explore the organic photovoltaic performances, P1 and P2 were mixed with PC71BM in the active layer of organic solar cells (OSCs) by conventional device structure. As a result P1 and P2 based devices revealed power conversion efficiencies (PCEs) of 0.33% and 0.60% respectively. However, the additive treatment enhanced PCE from 0.49 to 0.73% for P2 based devices.  相似文献   

3.
Optical and electrochemical properties of regiosymmetric and soluble alkylenedioxyselenophene‐based electrochromic polymers, namely poly(3,3‐dibutyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C4), poly(3,3‐dihexyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C6), and poly(3,3‐didecyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C10), are highlighted. It is noted that these unique polymers have low bandgaps (1.57–1.65 eV), and they are exceptionally stable under ambient atmospheric conditions. Polymer films retained 82–97% of their electroactivity after 5000 cycles. The percent transmittance of PProDOS‐Cn (n = 4, 6, 10) films found to be between 55 and 59%. Furthermore, these novel soluble PProDOS‐Cn polymers showed electrochromic behavior: a color change form pure blue to highly transparent state in a low switching time (1.0 s) during oxidation with high coloration efficiencies (328–864 cm2 C?1) when compared to their thiophene analogues. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
以3,4-噻吩二甲酸和五氟苯胺为起始原料,经酰化、缩合和NBS溴代反应制得2,5-二溴-5-五氟苯基噻吩[3,4-c]吡咯-4,6-二酮(2); 2经两步反应制得2-溴-2,5-二噻吩-5-五氟苯基噻吩[3,4-c]吡咯-4,6-二酮(4);以苯并二噻吩衍生物(BDT-1和BDT-2)为给体单元,2或4为受体单元,分别经Stille偶联缩聚反应合成了3个含五氟苯的噻吩并吡咯二酮-苯并二噻吩共轭共聚物(5a~5c),其结构和性能经1H NMR, 13C NMR, UV-Vis, TGA和循环伏安法表征。结果表明:5a, 5b和5c的最大吸收峰分别位于559 nm, 559 nm和547 nm,光学带隙分别为1.70 eV, 1.73 eV, 1.68 eV(薄膜)和1.84 eV, 1.83 eV, 1.81 eV(甲苯);失重5%的温度为307~325 ℃; 5a~5c的起始氧化电位和起始还原电位分别为1.14 V, 1.18 V, 1.03 V和-0.67 V, -0.67 V, -0.70 V; HOMO和LUMO能级分别为-5.54 eV, -5.58 eV, -5.43 eV和-3.73 eV, -3.73 eV, -3.70 eV。  相似文献   

5.
Four new alternating narrow band-gap copolymers containing benzodithiophene, 4,8-dithiophen-2-yl-benzo[1,2-c;4,5-c′-bis[1,2,5]thiadiazole, 4,9-bis(thiophen-2-yl)-6,7-di(2-ethylhexyl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline, 5,8-dibromo-2,3-bis(5-octylthiophen-2-yl)quinoxaline, and 4,7-bis(5-bromothiophen-2-yl)benzo[1,2,5] thiadiazole units are synthesized under Stille reaction conditions. The structures, molecular masses, and physical properties of the copolymers are studied via 1H NMR spectroscopy, GPC, cyclic voltammetry, and thermomechanical and thermogravimetric analyses. The polymers show solubility and a broad absorption region (with the band gap in the range from 0.81 to 1.53 eV). All of the polymers are photostable in air, and their levels of the highest occupied molecular orbital vary from ?4.98 to ?5.30 eV. Polymer solar cells based on these copolymers as donors and fullerene PC60BM as an acceptor show open-circuit voltages in the range 0.16–0.61 V, and the efficiencies of the devices are in the range 0.02–0.49%.  相似文献   

6.
A couple of novel electrochromic materials poly(2,3,4,5-tetrakis(2,3-hydrothieno[3,4-b]dixin-5-yl)-1-methyl-1H-pyrrole)(P(t-EDOT-mPy))and poly(5,5',5",5'"-(thiophene-2,3,4,5-tetrayl)tetrakis(2,3-dihydrothieno[3,4-b][1,4]dioxine))(P(t-EDOTTh))are electrodeposited via multi-position polymerization of their tetra-EDOT substituted monomers t-EDOT-mPy and t-EDOT-Th,respectively.Compared with the linear 2D structured poly(thiophene)(E_g=2.2 eV)and poly(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophene)(E_g=1.7eV),P(t-EDOT-Th)(E_g=1.62eV)has the lowest band gap.Hence,we speculate that the band gaps of the two polymers,having 3D structures,are decreased in contrast to non-substituted polymers or bi-EDOT substituted polymers,thiophene and 1-methyl-1H-pyrrole.The results indicated that P(t-EDOT-Th)thin films are more stable and show higher transmittance amid two polymers,which may find their utilization in organic optoelectronics.  相似文献   

7.
Two novel decyloxyphenylquinoxaline-based donor-acceptor(D-A) electroactive monomers bearing dialkoxythiophene as the donor unit are synthesized using Stille coupling reaction. The corresponding polymers, poly[2,3-bis(4-decyloxyphenyl)-5,8-bis(3,4-dimethoxylthiophen-2-yl)quinoxaline](P1) and poly[2,3-bis(4-decyloxyphenyl)-5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)quinoxaline](P2), are directly deposited onto the working electrode surface by electropolymerization. All materials were characterized by nuclear magnetic resonance(NMR), mass spectrometry(MS), scanning electron microscopy(SEM), cyclic voltammetry(CV), ultraviolet-visible absorption spectrometry(UV-Vis) and spectro-electrochemical measurements. Electrochemical studies demonstrate that both polymers are capable of showing both reasonable n- and p-doping processes, and advanced long-term switching stabilities. 3,4-Ethylenedioxythiophene substituted for 3,4-dimethoxythiophene as a donor unit, which enhances the conjugated double-bond character of the conducting polymer, thus leading to a lower electronic band-gap. Likewise, the neutral state color of the synthesized polymer tuned from blue to blue-green corresponding to the red shift of the maximum absorption wavelengths in the visible region. In addition, kinetics study of P1 revealed 42%(595 nm), 30%(839 nm) and 69%(1500 nm) transmittance changes(ΔT%), while P2 exhibited 32%(740 nm), 71%(2000 nm) at the dominant wavelengths. It was also observed that both films could switch quickly between the neutral state and oxidation state, with the response time less than 1 s both in visible and near infrared regions.  相似文献   

8.
New thieno[3,4-b]thiophene derivatives were prepared via a short and versatile synthetic route. Electrochemical studies of 2-heptenylthieno[3,4-b]thiophene, 2-styrylthieno[3,4-b]thiophene, and 2-phenyl-3-(thieno[3,4-b]thiophene-2-yl)acrylonitrile and the corresponding polymers revealed that raising the HOMO and lowering the LUMO can be attained by functionalizing thieno[3,4-b]thiophene with aromatic resonance-enhancing and electron-withdrawing groups. The bandgap of resulting polymers varied from 0.78 to 1.0 eV, indicating that poly(2-phenyl-3-(thieno[3,4-b]thiophene-2-yl)acrylonitrile) is one of the lowest bandgap polymers ever reported.  相似文献   

9.
Electrochromic polymers based on [1,2,5]thiadiazolo[3,4‐g]quinoxaline acceptor and thiophene, 3,4‐ethylenedioxythiophene and 3,3‐didecyl‐3,4‐proylenedioxythiophene donors, namely poly(6,7‐diphenyl‐4,9‐di(thiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P1 ), poly(4‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐9‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐7‐yl)‐6,7‐diphenyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P2 ), and poly(4‐(3,3‐didecyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐6‐yl)‐9‐(3,3‐didecyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐8‐yl)‐6,7‐diphenyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P3 ), respectively, were electrochemically and/or chemically synthesized and characterized. Electrochemical and optical properties of the polymers were then investigated. The results, which were obtained electrochemically and optically, indicate that the polymers bearing the same acceptor and different donor units have a band gap range of 0.59–1.24 eV depending on the strength and size of the donor units and band gap determination method. A significant finding in this study was the phenomenon that when the acceptor is physically huge, the general rule that a weak donor would have a high band gap whereas a strong donor would have low band gap can be broken due to the torsional angles/steric hindrances involved with physically large donor molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3483–3493  相似文献   

10.
Four new pyrrolidine alkaloids, broussonetines R, S, T, and V and a new pyrroline alkaloid, broussonetine U were isolated from the branches of Broussonetia kazinoki SIEB. (Moraceae) in low yield. Broussonetines R, S and T were formulated as (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R)-1-hydroxy-3-[6-(4-hydroxybutyl)-cyclohexy-2-on-1(6)-enyllpropyl] pyrrolidine (1), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R,10S)-1,10,13-trihydroxytridecyl] pyrrolidine (2), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R,5S)-1,5, 13-trihydroxy-10-oxo-tridecyl] pyrrolidine (3). And broussonetines U and V were proposed to be (2S,3S,4S)-2-hydroxymethyl-3, 4-dihydroxy-5-(9-oxo-13-hydroxytridecyl)-5-pyrroline (4), (2R,3S,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(E)-9-oxo-13-hydroxy-3-tridecenyl] pyrrolidine (5), respectively, by spectroscopic and chemical methods.  相似文献   

11.
The synthesis, characterization and electrochemical polymerization, along with redox switching behavior of the resultant polymers, of 1,4-bis(2-(3,4-ethylenedioxy)thienyl)–2,5-difluorobenzene ( 1 ) and 1,4-bis(2-thienyl)–2,5-difluorobenzene ( 2 ) is presented. Compounds 1 and 2 were synthesized by a Pd°-catalyzed cross-coupling and in good yields (85% and 84%, respectively). Both monomers electropolymerize to form electroactive redox switchable films, with the more electron-rich 3,4-ethylenedioxythiophene derivative polymerizing and switching at lower potentials. The electronic band gaps were determined to be 1.9 eV for P1 and 2.3 eV for P2. Thin films of P1 and P2 were found to be electrochromic and exhibit color changes of red-to-blue/black for P1 and yellow-to-black for P2. These results are compared with various substituted bis(heterocycle)benzene derivatives in order to present a series of structure to property relationships. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, we have used terthiophene side chain to modify benzo[1,2‐b:4,5‐b′]dithiophene (BDT) to form novel building block for BDT polymers. In this paper, this building block is used to copolymerized with thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and thieno[3,4‐b]thiophene (TT). This building block and TPD‐ or TT‐based polymers (P1 and P3) show high open circuit voltage (VOC) (ca. 0.9–0.95 V) and low energy loss (Eg–eVOC) in solar cells devices compared with similar polymers without bulky side chain. We further introduce thiophene π bridge into these polymers backbone to form two other polymers (P2 and P4). We find this thiophene π bridge does contribute to this bulky side chained benzodithiophene polymer photovoltaic performances, especially for power conversion efficiencies (PCEs). The polymer solar cells (PSCs) performances are moderate in this article due to the serious aggregation in the PSCs active layer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1615–1622  相似文献   

13.
This article compares the cure behavior and properties of phthalonitrile polymers derived from three different monomers, namely, 4,4′-bis(3,4-dicyanophenoxy)biphenyl, 2,2-bis[4-(3,4-dicyanophenoxy)phenyl]hexafluoropropane and 2,2-bis[4-(3,4-dicyanophenoxy)phenyl]propane. Rheometric measurements with monomer melt in the presence of an aromatic diamine curing agent reveal that the rate of the cure reaction differs for the three monomers. The rate is dependent on the concentration of the curing agent. The glass transition temperature advances with increasing extent of cure and disappears upon postcure at temperatures in excess of 350°C. Based on thermogravimetric analysis, the thermal stability of all three polymers are comparable, whereas the fluorine-containing resin shows the best oxidative stability at elevated temperatures. Microscale calorimetric studies on all three polymers reveal that the char yields are high and the total heat release upon exposure to 50 kW/m2 flux for each polymer is low, compared to other thermosets. Flexural strength ranges between 80–120 MPa. The water uptake under ambient conditions is less than 3% by weight after submersion in water for seven months. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2105–2111, 1999  相似文献   

14.
Synthesis of two novel donor – acceptor – donor type monomers containing benzimidazole as the acceptor unit and thiophene and 3,4-ethylenedioxythiophene (EDOT) as the donor units were performed. 2-(Perfluorophenyl)-4,7-di(thiophen-2-yl)-1H-benzo[d]imidazole and 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-(perfluorophenyl)-1H-benzo[d]imidazole were synthesized successfully and polymerized electrochemically. The electrochemical and spectroelectrochemical studies of the polymers were studied. The effect of electron donating moieties on the optical properties of electrochemically polymerized polymers was investigated. Both polymers were p type dopable and possessed multi-chromic property. Optical studies demonstrated that the polymer based on EDOT unit (P2) resulted in lower band gap since EDOT is higher electron donating group than thiophene.  相似文献   

15.
以2-溴甲基-3-喹啉甲酸乙酯(1)为底物, 分别与α-萘酚和β-萘酚“一锅法”高产率合成了2-(α-萘氧甲基)-3-喹啉甲酸(2a)和2-(β-萘氧甲基)-3-喹啉甲酸(2b). 化合物2a, 2b用Eaton试剂(五氧化二磷-甲基磺酸)作为环化试剂, 发生分子内Friedel-Crafts酰基化反应得到两种新型闭环产物: 萘并[2’,1’,6,7]氧杂并[3,4-b]喹啉-7(14H)-酮(3a)和萘并[1’,2’,6,7]氧杂并[3,4-b]喹啉-15(8H)-酮(3b). 化合物3a, 3b在氢氧化钾的乙醇-水溶液中经1,2-Wittig重排和空气氧化生成萘并[2,1-b]吖啶-7,14-二酮(4a)和萘并[1,2-b]吖啶-7,14-二酮(4b). 所合成新化合物2a~4a, 2b~4b的结构通过 IR, UV, 1H NMR, MS和元素分析进行了确认. 测定了化合物2a~4a, 2b~4b在三氯甲烷中的紫外光谱和化合物3a, 4a和3b, 4b的固体荧光光谱, 2a~4a, 2b~4b在三氯甲烷中的最大吸收峰分别位于280, 261, 312, 273, 256和313 nm; 3a, 4a和3b, 4b在固态状态下的最大发射波长分别为350, 300, 274和330 nm.  相似文献   

16.
[reaction: see text] An unsymmetrical analogue of 3,4-ethylenedioxythiophene (EDOT) has been synthesized by transetherification of 3,4-dimethoxythiophene. Electropolymerization leads to a stable electroactive polymer with electrochemical and electronic properties intermediate between those of the two symmetrical parent polymers poly(EDOT) and poly(3,4-ethylenedithiathiophene). Experimental work shows that the 2- and 5-positions possess a different reactivity, thus opening the possibility of synthesizing regioregular oligomers or polymers.  相似文献   

17.
A series of fluorinated copolyimides containing phthalazinone moieties were prepared from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 3,3′4,4′-benzophenone-tetracarboxylic dianhydride (BPDA) and 2-(4-alninophenyl)-4-[4-(4-alninophenoxyl)phenyl]-2,3-phthalazin-1-one (DHPZ-2NH2) for making polymeric optical waveguides. The resulting copolymers containing 0-50mol% BPDA/DHPZ-2NH2 show good solubility and are soluble in some organic polar aprotic solvents. The copolyimides also present excellent thermal stability. These polymers possess high glass transition temperature higher than 603K and high decomposition temperature above 742K determined by differential scanning calorimetry and thermogravimetric analysis, respectively, under a nitrogen atmosphere. Their refractive indices could be controlled by varying the ratio of 6FDA and BPDA in the copolymer from 0.5 to 1.0, and the in-plane refractive indices (riTE) range from 1.6366 to 1.6668 and the out-of-plane refractive indices (nTM) from 1.6024 to 1.6280 at 632.8nm.The polymers birefringence (0.0342—0.0388) is almost independent of the 6FDA content of copolymer, which indicated that the phthalazinone-containing copolyimides could be suitable to fabricate optical waveguides possessing a low polarization dependent loss (PDL).  相似文献   

18.
Two novel diketopyrrolopyrrole-based alternating copolymers, poly(2,7-(9,9-diethyl)-fluorenylvinylene-alt-2,5-bis(4′-octyloxyphe- nylmethyl)-3,6-bis(4-vinylenephenyl)pyrrolo[3,4-c]pyrrole-1,4-dione) (P1) and poly(1,4-(2,5-dioctyl- oxy)-phenylenevinylene-alt-2,5-bis(4′-octyloxyphenylmethyl)-3,6-bis(4-vinylenephenyl)pyrrolo[3,4-c]pyrrole-1,4-dione) (P2) were synthesized through Wittig polycondensation in good yields. P1 and P2 were characterized by NMR, FT-IR, UV-Vis, photoluminescence (PL) and electroluminescence (EL). EL devices with ITO/PEDOT/polymer/CsF/Al exhibited red-emitting light with the maximum EL wavelength at 620 nm and 682 nm. The results show that PL quantum yield of the polymers in thin film can be improved through N-alkylation of diketopyrrolopyrrole (DPP) with bulky substituent. EL performance of P2 was better than P1, which might be due to 1,4-dioctyloxybenzene of P2 enhancing the hole-transporting to make more charge balance. EL devices of P1 and P2 possessed low turn on voltage (2.4 V and 2.1 V, respectively), which was an advantage for PLED.  相似文献   

19.
Enantiomeric pure (−)-(3R,4S)-1-benzyl-3,4-epoxypiperidine and (−)-(R)-1-benzyl-3-hydroxy-1,2,3,6-tetrahydropyridine with enantiomeric excess 61.9% were obtained by kinetic separation of (±)-1-benzyl-3,4-epoxypiperidine under the action of lithium salt (+)-(S)-2-[(pyrrolidin-1-yl)methyl]pyrrolidine. The sterical direction of the kinetic separation of (±)-1-benzyl-3,4-epoxypiperidine and absolute configurations of the target products were established. Original Russian Text ? G.V. Grishina, I.S. Veselov, V.A. Davankov, M.M. Il’in, N.S. Zefirov, 2008, published in Zhurnal Organicheskoi Khimii, 2008, Vol. 44, No. 2, pp. 287–291.  相似文献   

20.
Three donor–acceptor type π‐conjugated monomers containing 2, 1, 3‐benzothiadiazole (Tz) as the acceptor unit and different thiophene derivatives (thiophene, 3,4‐ethylenedioxythiophene, and thieno[3,2‐b]thiophene) as the donor units have been synthesized via Stille coupling reaction. The corresponding polymers are electrochemically deposited onto FTO glass by cyclic voltammetry (CV). The maximum absorption wavelength of the neutral polymers varies with the electron‐rich character of incorporated thiophene moieties, giving rise to tunable colors. In addition, the prepared polymer films demonstrate reasonable transmittance modulation, fast switching rate, high color efficiency and good stability, which meet the requirements of smart windows and electrochromic display applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2239–2246  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号