首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medical devices-related infections pose a great threat to patients and cause an increased morbidity and mortality. Herein, we prepare an antibacterial composite(TPU-x) through blending medical grade thermoplastic polyurethane(TPU) and the complex(PL-DOSS) of ε-polylysine(ε-PL) and docusate sodium(DOSS). 99% reduction of colony forming unit(CFU) can be obtained in TPU-x composite films even at relatively low content of PL-DOSS, e.g. 0.13% for Methicillin resistant S. aureus(MRSA) and 0.5% for E. coli. The excellent antibacterial activity is mainly attributed to the formation of PL-DOSS nanoparticles that are uniformly dispersed in the TPU matrix with a size of ~100 nm. TPU-x composite films exhibit long-term stability in saline and good biocompatibility, and retain mechanical properties of TPU.  相似文献   

2.
Flexible and wearable strain sensors for human-computer interaction, health monitoring, and soft robotics have drawn widespread attention to promising applications in the next generation of artificial intelligence devices. However, conventional semiconductor sensors are difficult to meet the requirements of flexibility and stretchability. Here, we reported a kind of novel and simple sensor based on layer-by-layer(LBL) method. Carbon nanotubes (CNTs) layer provides high ductility and stability in the process of tension sensing, while silver layer provides low initial resistance and fast reflecting in the process of tension sensing. LBL method ensures the uniformity of the conductive layer. The sensor has superior sheet resistance of 9.44Ω/sq., high elongation at break of 104%. For sensing capability, the sensor has wide reflecting range of 60%, high gauge factor (GF) of 1000 up to 60%strain, fast reflecting time of 165 ms. Excellent reliability and stability have also been verified. It is also worth mentioning that the entire process does not require any expensive equipments, complicated processes or harsh experimental conditions. The above features provide an idea for large-scale application of flexible stretchable sensors.  相似文献   

3.
Flexible strain sensors based on conductive fillers and flexible polymers possessed significant advantages in human motion detection. Preparing a strain sensing layer with high electrical conductivity and excellent mechanical property under high content of conductive filler contributed to the stability of flexible strain sensors. In this study, MWCNTs/PDMS composite film was prepared by the organic solvent method. The microstructure, electrical conductivity, mechanical property, and piezoresistive characteristics of the composite film at different MWCNTs contents were characterized and discussed. When the mass fraction of MWCNTs in the composite film was 5%, the composite film exhibited a high electrical conductivity of 9.56 S/m while maintaining ideal mechanical properties, and the film thickness was just about 180 μm. The relationship between electrical signals and film strain was performed. The piezoresistive characteristic results demonstrated that the prepared composite film could be used as flexible strain sensor for human motion detection. The prepared thin MWCNTs/PDMS composite film in this paper illustrated high conductive and desired flexibility, and was an alternative material for human motion detection.  相似文献   

4.
Kim HN  Lee SH  Suh KY 《Lab on a chip》2011,11(4):717-722
We present a simple method to generate cracks with controllable size (depth and width) and space gradients using deep surface oxidation and anisotropic mechanical stretching. To generate a thick oxidation layer (<~7 μm), a polydimethylsiloxane (PDMS) slab of uniform or varying thickness was exposed to UV/ozone for less than 30 min in the UV-C wavelength including wavelengths of 185 and 254 nm. Subsequently, the PDMS slab was wrapped on a cylindrical support (radius: 11 mm) to apply a uniform bending strain (<21%), resulting in equally separated, anisotropic cracks over a large area. By modulating initial oxidation depth and applied bending stress, cracks of varying sizes and spaces were formed on a single PDMS slab. Furthermore, multiple, sequential cracks were generated by increasing the strain in a step-wise fashion and multi-directional cracks by applying the strain with an orientation angle. Finally, size and space-varying cracks were formed between two adjacent large channels in an interconnected format by selective masking and irreversible bonding.  相似文献   

5.
Poly(dimethylsiloxane) (PDMS) substrates are used in many applications where the substrates need to be elongated and various treatments are used to regulate their surface properties. In this article, we compare the effect of three of such treatments, namely, UV irradiation, water plasma, and plasma polymerization, both from a molecular and from a macroscopic point of view. We focus our attention in particular on the behavior of the treated surfaces under mechanical stretching. UV irradiation induces the substitution of methyl groups by hydroxyl and acid groups, water plasma leads to a silicate-like layer, and plasma polymerization causes the formation of an organic thin film with a major content of anhydride and acid groups. Stretching induces cracks on the surface both for silicate-like layers and for plasma polymer thin coatings. This is not the case for the UV irradiated PDMS substrates. We then analyzed the chemical composition of these cracks. In the case of water plasma, the cracks reveal native PDMS. In the case of plasma polymerization, the cracks reveal modified PDMS. The contact angles of plasma polymer and UV treated surfaces vary only very slightly under stretching, whereas large variations are observed for water plasma treatments. The small variation in the contact angle values observed on the plasma polymer thin film under stretching even when cracks appear on the surface are explained by the specific chemistry of the PDMS in the cracks. We find that it is very different from native PDMS and that its structure is somewhere between Si(O2) and Si(O3). This is, to our knowledge, the first study where different surface treatments of PDMS are compared for films under stretching.  相似文献   

6.
首先采用溶液共混法制备出石墨烯-碳纳米管(G-CNT)/聚氨酯(TPU)复合材料,然后通过拉伸实验及扫描电子显微镜(SEM)表征来考察该材料的拉伸强度和微波自修复特性,并从力学及材料与微波之间的相互作用等角度对其拉伸强度增强和微波修复机理进行研究.结果表明:在拉伸强度方面,与单一的石墨烯或CNT增强TPU相比,G-CNT之间形成的协同效应使TPU拉伸强度得到进一步提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU抗拉强度较纯TPU提高了67%,较G/TPU提高了18%,较CNT/TPU提高了25%;在材料裂纹的微波修复方面,石墨烯和CNT之间的协同效应使TPU材料自修复效果得到有效提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU修复效果达到最高值117%.  相似文献   

7.
Wu CY  Liao WH  Tung YC 《Lab on a chip》2011,11(10):1740-1746
This paper reports a novel pressure sensor with an electrical readout based on electrofluidic circuits constructed by ionic liquid (IL)-filled microfluidic channels. The developed pressure sensor can be seamlessly fabricated into polydimethylsiloxane (PDMS) microfluidic systems using the well-developed multilayer soft lithography (MSL) technique without additional assembly or sophisticated cleanroom microfabrication processes. Therefore, the device can be easily scaled up and is fully disposable. The pressure sensing is achieved by measuring the pressure-induced electrical resistance variation of the constructed electrofluidic resistor. In addition, an electrofluidic Wheatstone bridge circuit is designed for accurate and stable resistance measurements. The pressure sensor is characterized using pressurized nitrogen gas and various liquids which flow into the microfluidic channels. The experimental results demonstrate the great long-term stability (more than a week), temperature stability (up to 100 °C), and linear characteristics of the developed pressure sensing scheme. Consequently, the integrated microfluidic pressure sensor developed in this paper is promising for better monitoring and for characterizing the flow conditions and liquid properties inside the PDMS microfluidic systems in an easier manner for various lab on a chip applications.  相似文献   

8.
Stretchable conductive fibers offer unparalleled advantages in the development of wearable strain sensors for smart textiles due to their excellent flexibility and weaveability.However,the practical applications of these fibers in wearable devices are hindered by either contradictory properties of conductive fibers(high stretchability versus high sensing stability),or lack of manufacturing scalability.Herein,we present a facile approach for highly stretchable self-crimping fiber strain sensors based on a polyether-ester(TPEE)elastomer matrix using a side-by-side bicomponent melt-spinning process involving two parallel but attached components with different shrinkage properties.The TPEE component serves as a highly elastic mechanical support layer within the bicomponent fibers,while the conductive component(E-TPEE)of carbon black(CB),multiwalled carbon nanotubes(MWCNTs)and TPEE works as a strain-sensitive layer.In addition to the intrinsic elasticity of the matrix,the TPEE/E-TPEE bicomponent fibers present an excellent form of elasticity due to self-crimping.The self-crimping elongation of the fibers can provide a large deformation,and after the crimp disappears,the intrinsic elastic deformation is responsible for monitoring the strain sensing.The reliable strain sensing range of the TPEE/E-TPEE composite fibers was 160%-270%and could be regulated by adjusting the crimp structure.More importantly,the TPEE/E-TPEE fibers had a diameter of 30-40 μm and tenacity of 40-50 MPa,showing the necessary practicality.This work introduces new possibilities for fiber strain sensors produced in standard industrial spinning machines.  相似文献   

9.
The flexible stretchable sensors have great potential for implementation in various applications, such as intelligent soft robots, health monitoring, and motion detection. However, most of the flexible stretchable sensors with microstructures and high sensitivities are fabricated by expensive templates and complex processes. In consideration of large-scale fabrication, a low cost and efficient way is in great demand. Herein, electroless plating on Nafion films with decent swelling ratios are proposed to fabricate stretchable sensors with wrinkle-structured electrodes. By adding isopropanol (IPA) to the electroless plating process, the H2O-IPA sensor with larger swelling ratio shows deeper surface wrinkles, higher surface roughness, and better sensitivity to strain. At the same time, the H2O-IPA sensor exhibit good durability (500 cycles). By mounting the sensor on the joint of human finger, the motion of the finger bending and even the bending degree can be accurately detected, indicating the potential use in the field of wearable devices and soft electronic skins.  相似文献   

10.
A series of blends of polyoxymethylene (POM)/thermoplastic polyesterurethane (TPU) has been obtained by mechanical processing using a double screw extruder. The thermal stability and the thermal degradation profiles of POM/TPU blends were investigated by thermogravimetric analysis (TG) coupled on-line with Fourier transform infrared spectroscopy (FTIR). It was found that incorporation of TPU into POM matrix resulted in increase of thermal stability of blends in comparison with pristine materials. The thermal degradation of TPU in inert gas atmosphere proceeds in two steps while the thermal degradation of POM is basically a one step process with a substage in a higher temperature range. The most abundant volatile products of the thermal degradation were identified; the possibly routes of their formation have been presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
This paper describes improvements to an apparatus for in-situ determinations of swelling where a linear inductive probe and electronic column gauge with an overall resolution of 0.1 μm was used for measurements of seven variants of polyacrylonitrile (PAN)/polydimethylsiloxane (PDMS) composite nanofiltration membranes in a range of alkane, aromatic and alcohol solvents. The unswollen membranes incorporated PDMS layers between 1 and 10 μm nominal thickness and were manufactured with a radiation and/or thermal crosslinking step.

The tested membranes exhibited a range of swelling dependent on the degree of crosslinking, the initial PDMS layer thickness and the type of solvent. With no applied pressure the PDMS layer on some radiation cross-linked membranes swelled as much as 170% of the initial thickness whilst other membranes were restricted to a maximum swelling of 80%. When a pressure up to 2000 kPa was applied to a membrane then swelling could be reduced to 20% of the value obtained at zero applied pressure. By vertically stacking up to three membrane samples it was possible to determine the swelling of PDMS layers as thin as 1 μm, although higher imposed pressures rendered some results unreliable as the measurement resolution of the apparatus was approached. The results of the swelling experiments are contrasted with crossflow nanofiltration performance in terms of solvent flux and solute rejection.  相似文献   


12.
李强  郭朝霞 《高分子科学》2017,35(6):713-720
Antibacterial thermoplastic polyurethane(TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles(Ag NPs) onto TPU/3-aminopropyltriethoxysilane(APS) co-electrospun fiber mats from silver sol. The use of APS can functionalize TPU fibers with amino groups, facilitating the adsorption of Ag NPs. The effects of p H of silver sol and APS content on Ag NP adsorption and antibacterial activity were investigated. Ag NP adsorption was evidenced by TEM, XPS and TGA. Significant Ag NP adsorption occurred at p H = 3-5. The main driving force for Ag NP adsorption is electrostatic interaction between ―NH3~+ of the fibers and ―COO-derived from the ―COOH group capped on the surfaces of Ag NPs. The antibacterial activity of the Ag NP-decorated TPU/APS fiber mats was investigated using both gram-negative Escherichia coli and gram-positive Bacillus subtilis. The antibacterial rate increases with increasing APS content up to 5% where the antibacterial rates against both types of bacteria are over 99.9%.  相似文献   

13.
The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fhbricate highly flexible, transparent and conductive Ag nanowires(NWs) based films. TA modification transformed the PDMS surface from hydrophobicity into hydrophilicity without decreasing the transparence. A sheet resistance(Rs) of 80 Ω/cm^2 with an optical transmittance of 94% was achieved, which was superior to that of indium tin oxide(ITO) films. More importantly, the TA layer enhanced the interaction between Ag NWs and the PDMS substrate. The Ag NWs films on TA modified PDMS substrate exhibited excellent stability in Rs when subjected to a bending test.  相似文献   

14.
利用TiO_2膜制作了一种分子印迹光电化学传感器用来测定克百威。研究了掺杂改性对TiO_2光催化效率的影响,结果表明掺杂Au的TiO_2分子印迹膜对克百威有较好的光催化降解作用。对膜厚度和吸附时间等实验条件进行优化。在最佳实验条件下,克百威浓度在1.00×10~(-9)~2.20×10~(-7)mol/L范围内与光电流呈良好的线性关系,检出限(S/N=3)为1.10×10~(-10)mol/L。该TiO_2分子印迹膜有较好的灵敏度、选择性和稳定性。利用该传感器对水样中克百威进行测定,回收率为98.7%~104.0%。  相似文献   

15.
Hybrid capillary-poly(dimethysiloxane)(PDMS) microchips with integrated electrospray ionization (ESI) tips were directly fabricated by casting PDMS in a mould. The shapes of the emitter tips were drilled into the mould, which produced highly reproducible three-dimensional tips. Due to the fabrication method of the microfluidic devices, no sealing was necessary and it was possible to produce a perfect channel modified by PolyE-323, an aliphatic polyamine coating agent. A variety of different coating procedures were also evaluated for the outside of the emitter tip. Dusting graphite on a thin unpolymerised PDMS layer followed by polymerisation was proven to be the most suitable procedure. The emitter tips showed excellent electrochemical properties and durabilities. The coating of the emitter was eventually passivated, but not lost, and could be regenerated by electrochemical means. The excellent electrochemical stability was further confirmed in long term electrospray experiments, in which the emitter sprayed continuously for more than 180 h. The PolyE-323 was found suitable for systems that integrate rigid fused silica and soft PDMS technology, since it simply could be applied successfully to both materials. The spray stability was confirmed from the recording of a total ion chromatogram in which the electrospray current exhibited a relative standard deviation of 3.9% for a 30 min run. CE-ESI-MS separations of peptides were carried out within 2 min using the hybrid PDMS chip resulting in similar efficiencies as for fused silica capillaries of the same length and thus with no measurable band broadening effects, originating from the PDMS emitter.  相似文献   

16.
A hydrophilic thermoplastic polyurethane (TPU) was modified by reactive extrusion to obtain in a first step a grafted and soluble material and to finally form by a hydrolysis condensation process a weakly crosslinked network. Different isocyanates were used as grafting agents and a α,ω‐dihydroxypoly(dimethylsiloxane) (PDMS) was used to modify the hydrophilic/hydrophobic balance of the material and the chain length between the crosslinks. The influence of the isocyanate functionality and of the PDMS content were studied on the network formation and on the thermomechanical and water sorption properties. The networks properties were also compared with those of a TPU/PDMS blend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 48–61, 2006  相似文献   

17.
研究了表面带有环氧基团的玻璃纤维(GF)对聚丙烯(PP)/热塑性聚氨酯(TPU)/多壁碳纳米管(MWCNT)、 聚甲基丙烯酸甲酯(PMMA)/TPU/MWCNT和聚乳酸(PLA)/TPU/MWCNT体系导电性能的影响. 研究结果表明, 未添加GF时, 由于MWCNTs选择性地分布在TPU分散相中, PP/TPU/MWCNT, PMMA/TPU/MWCNT和PLA/TPU/MWCNT材料的导电性能很差; 加入20%的GF使3个体系的电阻率均大幅度下降, 最高下降约13个数量级, 表明填充GF是一种具有普适性的改善以TPU为分散相的共混体系导电性能的有效方法. GF使体系电阻率降低的机理主要是形成了TPU包覆GF结构, 该结构可以看作长径比较高的导电棒, 可以有效协助导电通路的构建; 同时GF还起到了体积占位的作用, 提高了体系中导电组分在基体中的有效浓度.  相似文献   

18.
In this article, we describe an experimental friction study of poly(dimethyl siloxane) (PDMS) networks on metallic substrates such as gold-coated slides, and under different conditions. The friction generates a transfer of a thin layer of PDMS and a preferential orientation of the polymer chains at the interface. However, the characterization of this layer is complicated, given the small amount of matter and the contact with a metallic surface. The polarization-modulation infrared reflexion-absorption spectroscopy (PM-IRRAS), which is an excellent tool for anisotropy and orientation studies, was used to characterize the PDMS transferred layer. Our results showed an induced anisotropy due to the friction, and in which PDMS chains are lying parallel to the gold substrate surface. Our spectroscopic analyzes allowed us to imagine a scheme of PDMS transfer on the gold surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2348–2353, 2004  相似文献   

19.
In this work, poly((PMMA‐b‐VI)‐co‐AA) (MMA = methyl methacrylate; VI = 1‐vinylimidazole; AA = acrylic acid) hydrogels and poly((PMMA‐b‐VI)‐co‐AA)/TPU (TPU = thermoplastic polyurethane) IPN (interpenetrating polymer networks) hydrogels have been fabricated via versatile infrared laser ignited frontal polymerization by using poly(PMMA‐b‐VI) macromonomer as the mononer. The frontal velocity and Tmax (the highest temperature that the laser beam detected at a fixed point) can be adjusted by varying monomer weight ratios, the concentration of BPO (BPO = benzoyl peroxide) and the amount of TPU. Moreover, the addition of TPU enhances the reactant viscosity to suppress the “fingering” of frontal polymerization (FP) and decrease Tmax of the reaction, providing a new inert carrier (TPU) to assist FP. Through the characterization of Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscope (SEM), and differential scanning calorimetry (DSC), the desired structure can be proved to exist in the IPN hydrogels. Furthermore, poly((PMMA‐b‐VI)‐co‐AA)/TPU IPN hydrogels possesses more excellent mechanical behaviors than hydrogels without IPN structure. Besides, the poly((PMMA‐b‐VI)‐co‐AA) hydrogels present splendid sensitive properties toward substances of different flavor including sourness (CA, citric acid or GA, gluconic acid), umami (SG, sodium glutamate), saltiness (SC, sodium chloride), sweetness (GLU, glucose), enabling their potential as artificial tongue‐like sensing materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1210–1221  相似文献   

20.
Applicability of polydimethylsiloxane (PDMS) for easy and rapid fabrication of enzyme sensor chips, based on electrochemical detection, is examined. The sensor chip consists of PDMS substrate with a microfluidic channel fabricated in it, and a glass substrate with enzyme-modified microelectrodes. The two substrates are clamped together between plastic plates. The sensor chip has shown no leakage around the microelectrodes under continuous solution flow (34 μl/min). Amperometric response of the sensor chips developed in this work suggest that various types of enzyme sensors can be designed by using PDMS microfluidic channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号