共查询到20条相似文献,搜索用时 20 毫秒
1.
The properties of the interface between a polymer melt and a solid wall are studied over a wide range of temperatures by dynamic Monte Carlo simulations. It is shown that in the supercooled state near the glass transition of the melt an “interphase” forms, the structure of which is influenced by the wall. The thickness of this interphase is determined from the monomer density profile near the surface and is strongly temperature dependent. At low glass-like temperatures it is larger than the bulk radius of gyration of the chains. 相似文献
2.
3.
Ospadov E Oblinsky DG Rothstein SM 《Physical chemistry chemical physics : PCCP》2011,13(17):8031-8036
We apply reptation quantum Monte Carlo to calculate one- and two-electron properties for ground-state LiH, including all tensor components for static polarizabilities and hyperpolarizabilities to fourth-order in the field. The importance sampling is performed with a large (QZ4P) STO basis set single determinant, directly obtained from commercial software, without incurring the overhead of optimizing many-parameter Jastrow-type functions of the inter-electronic and internuclear distances. We present formulas for the electrical response properties free from the finite-field approximation, which can be problematic for the purposes of stochastic estimation. The α, γ, A and C polarizability values are reasonably consistent with recent determinations reported in the literature, where they exist. A sum rule is obeyed for components of the B tensor, but B(zz,zz) as well as β(zzz) differ from what was reported in the literature. 相似文献
4.
《Computational and Theoretical Polymer Science》2000,10(1-2):29-41
A new Monte Carlo method is proposed for the simulation of bulk systems of atomistically detailed polymers. Each move consists of a configurational rearrangement of the atoms in a specified region of the material, rather than a specified molecule. Thus atoms within different chains may be displaced cooperatively in each Monte Carlo move. Here, the method is implemented for the case of melts of linear chains, where the bond lengths and bond angles are held constant during the move. The performance of the algorithm is examined for linear polyethylene systems with chain lengths of 100 and 1000 backbone atoms, under a range of conditions. The method shows a considerable potential as a very general and flexible tool for simulating realistic polymer materials, subject to a number of performances limiting factors which are described in detail. 相似文献
5.
A partial phase diagram is constructed for diblock copolymer melts using lattice-based Monte Carlo simulations. This is done by locating the order-disorder transition (ODT) with the aid of a recently proposed order parameter and identifying the ordered phase over a wide range of copolymer compositions (0.2相似文献
6.
We developed and employed the incremental gauge cell method to calculate the chemical potential (and thus free energies) of
long, flexible homopolymer chains of Lennard-Jones beads with harmonic bonds. The free energy of these chains was calculated
with respect to three external conditions: in the zero-density bulk limit, confined in a spherical pore with hard walls, and
confined in a spherical pore with attractive pores, the latter case being an analog of adsorption. Using the incremental gauge
cell method, we calculated the incremental chemical potential of free polymer chains before and after the globual-random coil
transitions. We also found that chains confined in attractive pores exhibit behaviors typical of low temperature physisorption
isotherms, such as layering followed by capillary condensation. 相似文献
7.
《Computational and Theoretical Polymer Science》2001,11(3):227-240
Monte Carlo Modelling of random polymer chains, course grained onto a cubic F lattice, provides the ability to monitor the long range relaxation processes and the dynamic parameters of chains up to 400 units long. The model, described and verified by Haire et al. (Haire KR, Carver TJ, Windle AH. A Monte Carlo model for dense polymer systems and its interlocking with molecular dynamics simulation. Computational and Theoretical Polymer Science 2000; in press), is here applied to the study of molecular parameters in the vicinity of different types of surface and also to the process of polymer welding, whereby adhesion between two adjacent surfaces is achieved by the interpenetration of chains which are across the surface.The model demonstrates that a surface distorts the conformation of chains adjacent to it to give an oblate molecular envelope, that the concentration of vacant sites and chain ends increases near to the surface and that the density of points representing the centres of mass of the chains increases in the sub-surface regions. These results confirm earlier predictions and provide additional confidence in the model.Modelling of the welding process leads to the parameter intrinsic weld time, tw, which is the time from initial perfect contact of the surfaces to the achievement of a weld within which the chain conformation is indistinguishable from the bulk. After the initial period in which the mating surfaces roughen, the welding proceeds according to the t1/4 law predicted by reptation theory. The time to a given level of interdiffusion across the boundary is proportional to the chain length l, a comparatively weak dependence, while tw is proportional to l3, a strong dependence. This is the same dependence on length as for the relaxation time of the chain end-to-end vectors. In fact, the agreement between the relaxation time, measured on the model of the bulk, and tw is surprisingly close, at least for the monodisperse polymers investigated here. 相似文献
8.
Ahmed E. Ismail George Stephanopoulos Gregory C. Rutledge 《Journal of polymer science. Part A, Polymer chemistry》2005,43(8):897-910
We introduce a new method for coarse-graining polymer chains, based on the wavelet transform, a multiresolution data analysis technique. This method, which assigns a cluster of particles to a coarse-grained bead located at the center of mass of the cluster, reduces the complexity of the problem significantly by dividing the simulation into several stages, each with a small fraction of the number of beads in the overall chain. At each stage, we compute the distributions of coarse-grained internal coordinates as well as potential functions required for subsequent simulation stages. We show that, with this wavelet-accelerated Monte Carlo method, coarse-grained Gaussian and self-avoiding random walks can reproduce results obtained from atomistic simulations to a high degree of accuracy in orders of magnitude less time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 897–910, 2005 相似文献
9.
Gerhard Zifferer Thomas Petrik Brigitte Neubauer Oskar Friedrich Olaj 《Macromolecular Symposia》2002,181(1):331-340
Polymers molecules in solution or melt are more or less flexible and continuously change their shape and size. Thus, characteristic properties of the system fluctuate around statistical mean values which are dependent on the concentration of the solution, on the quality of the solvent used, and on the specific structure of the molecules, e.g. linear or star-branched. The most direct approach to these quantities on a molecular level are computer simulations. Due to restrictions of computer power fully atomistic simulations of macromolecules are presently still at the beginning but several arguments justify the use of simplified models. The most efficient way dealing with polymer systems are Monte Carlo simulations based on lattice chains, at least as long as static properties are of interest only. In the present paper a short introduction to the field is given and selected examples are presented in order to demonstrate the usefulness of these methods. 相似文献
10.
The aim of the study was a theoretical investigation of the polymer molecules located between two parallel and impenetrable surfaces which were also attractive for polymer segments. The chains were constructed of identical segments and were restricted to knots of a simple cubic lattice. Since the chains were at good solvent conditions the only interactions between the segments of the chain were the excluded volume. The properties of the model chains were determined by means of Monte Carlo simulations with a sampling algorithm based on the chain's local changes of conformation. The differences and similarities in the structure for different adsorption regimes and the size of the slit were shown and discussed. It was observed that at certain conditions the polymer chain was adsorbed at one of the confining surfaces, and then after a certain period of time it detached from this surface and approached the opposite wall; this switch was repeated many times. The influence of the strength of the adsorption, the size of the slit, and the chain's length on the frequency of these jumps were determined. The mechanism of the chain's motion during the switch was also shown. 相似文献
11.
We study the non‐uniform stretching and relaxation of a long flexible end‐anchored polymer chain of N monomers (32 ≤ N ≤ 1 024) in a uniform field B by means of an off‐lattice bead‐spring Monte Carlo model. Our simulational results for the case of a Rouse‐like polymer in the good solvent regime confirm the existence of “trumpet”‐ and “flower”‐type chain conformations, predicted recently by scaling analysis based on the notion of Pincus tensile blobs. The observed elongation of the chain and the critical fields, separating three different regimes of chain deformation, are found to obey the predicted scaling behavior. The segment density distribution matches that of a DNA molecule pulled from one end at constant velocity in a good solvent. As expected, the relaxation of the stretch to coil transition of the polymer of length N is determined by the typical Rouse time τ ∝ N2ν+1. 相似文献
12.
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths N(c) are calculated from the packing length of the chains. These are combined with a local mobility mu determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients D(c)=muN(c). We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DD(c) as a function of reduced chain length NN(c). The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends. 相似文献
13.
We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition. 相似文献
14.
《Computational and Theoretical Polymer Science》2000,10(5):411-418
Translational diffusion has been simulated in monodisperse melts of four linear alkanes, C2xH4x+2, x=6,30,50,158, and two cyclic alkanes, C2xH4x, x=30,50, at 473 K. The alkanes are expressed in a coarse-grained representation using x beads on a high coordination lattice, one bead for every two carbon atoms. Short-range intramolecular interactions are controlled by an adaptation of the rotational isomeric state model for unperturbed polyethylene, and the long-range interactions are controlled by a step-wise three-shell potential energy function derived from a continuous Lennard-Jones potential energy function. Acceptance of trial moves, each of which changes the coordinates of a single bead only, is governed by the Metropolis rule. Translational diffusion coefficients, D, are estimated from the mean square displacement of the center of mass and the integral of the velocity autocorrelation function. Both approaches yield the same value for D, which demonstrates that the velocity has been defined in a reasonable manner in the Monte Carlo simulation. A method is proposed for the estimation of D when the trajectory is not quite long enough to have achieved the behavior characteristic of the limit as time approaches infinity. 相似文献
15.
The effect of crowded environment with static obstacles on the translocation of a three-dimensional self-avoiding polymer through a small pore is studied using dynamic Monte Carlo simulation. The translocation time τ is dependent on polymer-obstacle interaction and obstacle concentration. The influence of obstacles on the polymer translocation is explained qualitatively by the free energy landscape. There exists a special polymer-obstacle interaction at which the translocation time is roughly independent of the obstacle concentration at low obstacle concentration, and the strength of the special interaction is roughly independent of chain length N. Scaling relation τ ~ N(1.25) is observed for strong driving translocations. The diffusion property of polymer chain is also influenced by obstacles. Normal diffusion is only observed in dilute solution without obstacles or in a crowded environment with weak polymer-obstacle attraction. Otherwise, subdiffusion behavior of polymer is observed. 相似文献
16.
The translocation of a polymer chain through a narrow hole in a rigid obstacle has been studied by the static Monte Carlo simulations. A modified self-avoiding walk on a cubic lattice has been used to model the polymer in an athermal solution. The entropy of the chain before, in the course, and after the translocation process has been estimated by the statistical counting method. The thermodynamic generalized forces governing the translocation have been calculated. The influence of the system geometry on the entropic barrier landscape is discussed. 相似文献
17.
《Computational and Theoretical Polymer Science》1999,9(1):47-56
The effect of copolymer sequence distribution and stiffness on the adsorption–desorption transition and configuration of an adsorbed polymer chain is examined by Monte Carlo methods. Trends in the adsorption–desorption transition temperatures show that the transition temperature of the block and alternating copolymers are determined by entropic factors while the copolymers with a random sequence distribution (block-ran, random, or alt-ran, defined below) are controlled by enthalpic considerations. Analysis of the conformation of adsorbed chains and monomer density profiles suggests that utilizing an adsorbed rigid copolymer may be useful at tuning the properties of an interface in a multiphase material. A block copolymer can be utilized to affect substantial surface coverage and extensive expansion away from the surface. Additionally, an increase in the rigidity of the diblock chain will improve the expansion of the chain in all three dimensions. Alternatively, random copolymer structures offer a chain that will adopt a flatter adsorbed configuration that offers more efficient surface coverage. In this case, the expansion of the copolymer along the surface can be enhanced by increasing the stiffness of the chain with little or no change in the expansion away from the interface. 相似文献
18.
Off-lattice Monte Carlo simulations in the canonical ensemble are used to study polymer-particle interactions in nanocomposite materials. Specifically, nanoscale interactions between long polymer chains (N=550) and strongly adsorbing colloidal particles of comparable size to the polymer coils are quantified and their influence on nanocomposite structure and dynamics investigated. In this work, polymer-particle interactions are computed from the integrated force-distance curve on a pair of particles approaching each other in an isotropic polymer medium. Two distinct contributions to the polymer-particle interaction potential are identified: a damped oscillatory component that is due to chain density fluctuations and a steric repulsive component that arises from polymer confinement between the surfaces of approaching particles. Significantly, in systems where particles are in a dense polymer melt, the latter effect is found to be much stronger than the attractive polymer bridging effect. The polymer-particle interaction potential and the van der Waals potential between particles determine the equilibrium particle structure. Under thermodynamic equilibrium, particle aggregation is observed and there exists a fully developed polymer-particle network at a particle volume fraction of 11.3%. Near-surface polymer chain configurations deduced from our simulations are in good agreement with results from previous simulation studies. 相似文献
19.
A key issue in nanoscale materials and chemical processing is the need for thermodynamic and kinetic models covering colloid-polymer systems over the mesoscopic length scale (approximately 1-100 nm). We have applied Monte Carlo simulations to attractive nanoscale colloid-polymer mixtures toward developing a molecular basis for models of these complex systems. The expanded ensemble Monte Carlo simulation method is applied to calculate colloid chemical potentials (micro(c)) and polymer adsorption (gamma) in the presence of freely adsorbing Lennard-Jones (LJ) homopolymers (surface modifiers). gamma and micro(c) are studied as a function of nanoparticle diameter (sigma(c)), modifier chain length (n) and concentration, and colloid-polymer attractive strength over 0.3 < Rg/sigma(c) < 6 (Rg is the polymer radius of gyration). In the attractive regime, nanocolloid chemical potential decreases and adsorbed amount increases as sigma(c), or n is increased. The scaling of gamma with n from the simulations agrees with the theory of Aubouy and Raphael (Macromolecules 1998, 31, 4357) in the extreme limits of Rg/sigma(c). When Rg/sigma(c) is large, the "colloid" approaches a molecular size and interacts only locally with a few polymer segments and gamma approximately n. When Rg/sigma(c) is small, the system approaches the conventional colloid-polymer size regime where multiple chains interact with a single particle, and gamma approximately sigma(c)2, independent of n. In contrast, adsorption in the mesoscopic range of Rg/sigma(c) investigated here is represented well by a power law gamma approximately n(p), with 0 < p < 1 depending on concentration and LJ attractive strength. Likewise, the chemical potential from our results is fitted well with micro(c) approximately n(q)sigma(c)3, where the cubic term results from the sigma(c) dependence of particle surface area (approximately sigma(c)2) and LJ attractive magnitude (approximately sigma(c)). The q-exponent for micro(c) (micro(c) approximately n(q)) varies with composition and LJ attractive strength but is always very close to the power exponent for gamma (gamma approximately n(p)). This result leads to the conclusion that in attractive systems, polymer adsorption (and thus polymer-colloid attraction) dominates the micro(c) dependence on n, providing a molecular interpretation of the effect of adsorbed organic layers on nanoparticle stability and self-assembly. 相似文献
20.
A brief review is given of applications of Monte Carlo simulations to study the dynamical properties of coarse-grained models of polymer melts, emphasizing the crossover from the Rouse model toward reptation, and the glass transition. The extent to which Monte Carlo algorithms can mimic the actual chain dynamics is critically examined, and the need for the use of coarse-grained rather than fully atomistic models for such simulations is explained. It is shown that various lattice and continuum models yield qualitatively similar results, and the behavior agrees with the findings of corresponding molecular dynamics simulations and experiments, where available. It is argued that these simulations significantly enhance our understanding of the theoretical concepts on the dynamics of dense macromolecular systems. © 1997 John Wiley & Sons, Inc. 相似文献