首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short‐circuit current density and open‐circuit voltage in comparison with the corresponding HD‐PDFC‐DTBT (HD)‐ and DT‐PDPPTPT (DPP)‐based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance.

  相似文献   


2.
聚合物太阳能电池(PSC)由共轭聚合物给体和富勒烯衍生物受体的共混膜(活性层)夹在ITO透明导电玻璃正极和低功函数金属负极之间所组成,具有制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,近年来成为国内外研究前沿和热点。当前研究的焦点是提高器件的光电能量转换效率,而提高效率的关键是高效共轭聚合物给体和富勒烯衍生...  相似文献   

3.
喹喔啉衍生物由于合成简单,易功能化,成本较低等特点在众多领域都有广泛应用。其自身具有平面刚性结构,也是构建光电聚合物的重要单体。基于喹喔啉单元的有机分子化学结构和电子结构可修饰性强,通过骨架、侧链和取代基等修饰,易于调控分子的能级和吸光光谱,因此,当使用喹喔啉体系的共轭给体与球形富勒烯受体(如PCBM)及弱结晶性非富勒烯受体(如ITIC)均可表现出优异的光伏性能。在本工作中,基于结晶性较强的非富勒烯受体(o-IDTBR),我们首次制备出侧链不对称喹喔啉(简称:不对称喹喔啉)基聚合物(TPQ-1)与之匹配。相比于侧链对称性喹喔啉(简称:对称喹喔啉)(HFQx-T)与o-IDTBR组合,“弱结晶给体-强结晶受体”组合能表现出更佳均匀的相分离尺度,从而获得更高的短路电流及能量转换效率。TPQ-1与o-IDTBR共混后器件效率为8.6%,加入15%的TB7-Th后,器件效率达到9.6%。  相似文献   

4.
5.
杨正龙  卜弋龙  陈秋云 《化学进展》2011,23(12):2607-2616
太阳能电池能够将太阳能直接转化为电能,是利用太阳能资源的一种非常有效的手段。聚合物太阳能电池因成本低、重量轻、制备方便和可制成柔性器件的优点,已经成为该领域的研究热点之一。基于窄带隙共轭聚合物给体/富勒烯受体复合材料体系制得的太阳能电池的最高转换效率已经达到8.3%,而寻找性能更优异的聚合物给体材料是进一步提高光伏性能的关键因素。本文综述了近几年关于高效率窄带隙聚合物太阳能电池给体材料的研究进展,着重介绍了苯并噻二唑类共聚物、稠环噻吩类共聚物和吡嗪类共聚物等窄带隙聚合物给体材料体系及相应光伏器件的性能,分析了各种材料的优点和不足,并对今后这一领域的发展做了展望。  相似文献   

6.
Most of efficient polymer electron acceptors for polymer solar cells (PSCs) are based on naphthalene diimide or perylene diimide as the electron deficient building block. In this paper, for the first time, we report polymer electron acceptors based on fluorinated isoindigo (F‐IID) as the electron deficient building block. We synthesized two polymer electron acceptors consisting of alternating F‐IID unit and thiophene/selenophen unit. They show low‐lying LUMO/HOMO energy levels of –3.69/–5.69 eV, high electron mobilities of 1.31×10–5 cm2·V–1·s–1 and broad absorption spectra with the optical bandgap of 1.61 eV. PSC devices using the two F‐IID‐based polymers as polymer electron acceptors show encouraging power conversion efficiencies (PCEs) of up to 1.50% with an open‐circuit voltage (VOC) of 0.97 V, a short‐circuit current density (JSC) of 2.91 mA·cm–2, and a fill factor (FF) of 53.2%. This work suggests a new kind of polymer electron acceptors based on F‐IID unit.  相似文献   

7.
For all-polymer solar cells which are composed of polymer donors and polymer acceptors, the effect of alkyl side chains on photovoltaic performance is a matter of some debate, and this effect remains difficult to forecast. In this concise contribution, we demonstrate that three alkyls namely branched alkyl 2-butyloctyl (2BO), long linear alkyl n-dodecyl (C12), and double-short linear alkyl n-hexyls (DC6) incorporated into the side chains of large bandgap polymer donor PBDT-TTz can induce considerable, of significance, and different electronic, optical, and morphological parameters. Systematic studies shed light on the critical role of the double-short linear alkyl n-hexyls (DC6) in (i) producing large ionization potential value, (ii) increasing propensity of the polymer to order along the π-stacking direction, (iii) generating polymer crystallites with more preferential “face-on” orientation, consequently, (iv) improvement of carriers transportation, (v) suppression of charge recombination, (vi) reduction of energy loss in all-polymer devices. In parallel, we unearth that the PBDT-TTz with double-short linear alkyl n-hexyls (DC6) represents the highest efficiency of 8.3 %, whereas, the other two PBDT-TTz analogues (2BO, C12) yield efficiencies of less than 3 % in optimized all-polymer solar cells. Though branched or long linear alkyl side chains (2BO, C12) have been applied to provide the solution processability of conjugated polymers, motifs bearing multiple short linear alkyl substituents (DC6) are proved critical to the development of high performing polymers.  相似文献   

8.
聚合物太阳电池因其结构简单、成本低、重量轻和可制成柔性器件等突出优点,近年来受到广泛关注,成为发展绿色可再生能源的重要方向。聚合物太阳电池中的给体和受体光伏材料是决定器件性能的关键,本文综述了共轭聚合物给体和富勒烯受体光伏材料的最新研究进展,并在共轭聚合物给体材料中对聚噻吩衍生物以及窄带隙D-A共聚物进行了重点介绍。同时讨论了薄膜优化和器件稳定性,最后从提高电池效率的几个方面展望了聚合物太阳电池的发展方向。  相似文献   

9.
在本工作中,我们以烷硫基噻吩基取代的苯并二噻吩(BDTT-S)为给体单元、5, 6-二氟取代苯并三唑(FBTz)和噻唑并噻唑(TTz)为弱吸收电子受体单元,设计合成了一系列宽带隙的无规三元共聚物给体材料。通过改变两个受体单元FBTz和TTz在聚合物中的摩尔比,有效调节了聚合物的光学、电化学、分子排列以及电荷传输性能。最终,使用非卤溶剂为加工溶剂,以三元共聚物PSBTZ-60为给体、ITIC为非富勒烯受体的聚合物太阳能电池(PSCs)获得了10.3%的能量转换效率(PCE),其中开路电压为0.91 V,短路电流为18.0 mA·cm−2,填充因子为62.7%;与之相比,在相同的器件制备条件下,基于PSTZ:ITIC的PSCs仅获得8.5%的PCE,基于PSBZ:ITIC的PSCs也仅获得8.1%的PCE。这些结果表明:三元无规共聚能够作为一种简单且实用的策略去设计、合成高性能聚合物光伏材料。  相似文献   

10.
Four novel conjugated polymers ( P1‐4 ) with 9,10‐disubstituted phenanthrene (PhA) as the donor unit and 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low‐lying HOMO energy levels (below −5.3 eV), and high hole mobilities (in the range of 3.6 × 10−3 to 0.02 cm2 V−1 s−1). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1‐4 :PC71BM blends as the active layer and an alcohol‐soluble fullerene derivative (FN‐C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10‐disubstituted PhA are potential donor materials for high‐efficiency BHJ PSCs.

  相似文献   


11.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

12.
设计合成了一种中等带隙共轭聚合物,聚[N-(2-己基癸基)-2,2'-二噻吩-3,3'-二甲酰亚胺-交替共聚-5,5-(2,5-双(3-癸氧基噻吩)-2-噻吩基)-噻吩)](PBTI3T-O),其光谱吸收覆盖波长从400 nm到720 nm,具有较宽的吸收范围,同时易溶于氯苯溶剂,利于溶液加工。 PBTI3T-O与[6,6]-苯基-C71-丁酸异甲酯(PC71BM)复合薄膜的空穴迁移率为5.90×10-3 cm2/(V·s),该迁移率高于其它大部分聚合物电池给体材料。 由于PBTI3T-O较高的空穴迁移率,基于PBTI3T-O/PC71BM的器件在活性层厚度为237 nm时,效率可以达到5.56%。 即使活性层膜厚进一步增加到约300 nm时,器件的效率仍能够保持其最高器件效率的97%,可见其具有在大面积加工工艺中的应用潜力。  相似文献   

13.
本文设计了一种可以通过刮涂方法制备的基于银纳米线(AgNWs)的柔性复合透明电极,并以此为基础实现了高性能柔性聚合物太阳能电池的制备。 基于银纳米线的柔性复合薄膜(APA)由银纳米线(AgNWs),聚乙烯醇缩丁醛(PVB)和铝掺杂氧化锌(AZO)纳米粒子在低温下通过多层刮涂的方法制备。 APA透明复合薄膜在550 nm处透光率达到90.90%,面电阻低至13.01 Ω/sq,在柔性基底上具有很高的粘附性。 在透明的APA/聚对苯二甲酸乙二醇酯(PET)基底上制备的柔性聚合物太阳能电池(PSCs),能量转换效率达到5.47%。 而且以5 mm为曲率半径,经过1000次循环弯曲实验,电池的能量转换效率仅下降了14%。  相似文献   

14.
共混型聚合物太阳电池原理及研究进展   总被引:1,自引:0,他引:1  
於黄忠  彭俊彪 《化学进展》2007,19(11):1689-1694
共混聚合物太阳电池是一种将电子给体材料与电子受体材料混合的新型异质结光伏电池,这种新型太阳电池由于增大了异质结的表面积,减少了光生激子的复合,互穿网络结构有利于电荷的传输,再加上其成本低、工艺简单、能大面积制备等优点,近年来已成为国内外研究的热点.本文综述了聚合物太阳电池的研究进展,讨论了聚合物太阳电池的基本原理,解释了表征太阳电池的物理量开路电压(Voc)、短路电流(Isc)、填充因子(FF)和能量转换效率(η),分析了制作工艺、材料、电极等因素对器件性能的影响,阐述了国内外聚合物太阳电池研究的现状及存在问题.  相似文献   

15.
In all-polymer solar cells (APSCs),number-average molecular weights (Mns) of polymer donors and polymer acceptors play an important role in active layer morphology and photovoltaic performance.In this work,based on a series of APSCs with power conversion efficiency of approaching 10%,we study the effect of Mns of both polymer donor and polymer acceptor on active layer morphology and photovoltaic performance of APSCs.We select poly[4-(5-(4,8-bis(5-((2-butyloctyl)thio)thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,6-difluoro-2-(2-hexyldecyl)-7-(5-methylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole](CD1) as the polymer donor and poly[4-(5-(5,10-bis(2-dodecylhexadecyl)-4,4,g,9-tetrafluuoro-7-methyl-4,5,9,10-tetrahydro3a,5,8,10-tetraaza-4,g-diborapyren-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole](PBN-14) as the polymer acceptor.The Mns of polymer donor CD1 are 14.0,35.5 and 56.1 kg/mol,respectively,and the Mns of polymer acceptor PBN-14 are 32.7,72.4 and 103.4 kg/mol,respectively.To get the desired biscontinueous fibrous network morphololgy of the polymer donor/polymer acceptor blends,at least one polymer should have high or medium Mn.Moreover,when the Mn of polymer acceptor is high,the active layer morphology and APSC device performance are insensitive to the Mn of polymer donor.The optimal APSC device performance is obtained when the Mn of both the polymer donor and the polymer acceptor are medium.These results provide a comprehensive and deep understanding on the interplay and the effect of Mn of polymer donors and polymer acceptors in high-performance APSCs.  相似文献   

16.
有机太阳能电池具有低成本、柔性和质量轻等优势,是一种有应用前景的光伏技术,受到人们的广泛关注.有机太阳能电池的光敏活性层通常由p-型有机半导体(包括小分子和高分子)与n-型有机半导体(包括小分子和高分子)共混而成.小分子给体/高分子受体型有机太阳能电池具有形貌热稳定性优异的特点,值得深入研究.本综述旨在总结小分子给体/高分子受体型有机太阳能电池的研究进展,分别介绍了基于酰亚胺基、氰基和含硼氮配位键(B←N)的高分子受体的活性层材料体系的发展状况.在器件性能方面,通过分子设计、相分离形貌调控,改善了小分子给体/高分子受体的匹配性,将该类电池的能量转换效率从最初的0.29%提升至目前的9.51%,为性能的进一步提升总结了经验;在稳定性方面,基于该体系形貌热稳定性优异的特点,开发出高温耐受型有机太阳能电池器件.最后,展望了小分子给体/高分子受体型有机太阳能电池的未来发展方向和前景.  相似文献   

17.
Polymethacrylate with semiconducting side chains ( P1 ), synthesized by free radical polymerization, was used as a donor material for polymer solar cells. P1 is of high molecular weight (M n = 82 kg mol−1), good thermal stability, narrow band gap (1.87 eV), and low‐lying HOMO energy level (−5.24 eV). P1 possesses not only the good film‐forming ability of polymers but also the high purity of small organic molecules. Power conversion efficiencies (PCEs) of 0.63% and 1.22% have been obtained for solar cells with M1 :PC71BM and P1 :PC71BM as the active layers, respectively. With PC61BM as the acceptor, PCEs of M1 and P1 based devices decrease to 0.61% and 0.76%, respectively. To the best of our knowledge, this is the first report that free radical polymerization can be used to prepare polymer donors for photovoltaic applications.  相似文献   

18.
Here we reported the fabrication of efficient polymer solar cells from regioregular poly(3-hexylthiophene) (P3HT):fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PC6jBM) mixtures, in which solution- processed vanadium oxide (VOx) was used as a hole-extracting layer (HEL). The obtained devices exhibited a high power conversion efficiency of 3.96%, and can be enhanced to 4.06% and 4.16%, respectively, when two types of PEDOT:PSS with different conductivities were used in conjunction with the VOx layer. All the VOx-based devices showed a high fill factor (FF) over 70%, which was ascribed to efficient hole extracting efficiency associated with the solution-processed VOx hole-extracting layer. The origins of the improvement were also studied by transmission spectra, atomic force microscope (AFM), and capacitance-voltage characteristics.  相似文献   

19.
随着能源和环境问题日益严重,人们日益关注于太阳能的开发和应用。同时,无机太阳能电池因其自身原因而受到限制,聚合物太阳能电池受到更多的关注。在聚合物基的太阳能电池中,给体材料制约着电池效率的提高,其中材料的带隙和能级是影响其性能的主要因素。而通过研究和选取具有合适带隙和能级的给体材料可以有效地调节电池器件的效率。本文介绍了太阳能电池给体材料的设计原则与主要影响因素,并叙述了近年来该领域内的研究进展和以及发展前景。  相似文献   

20.
All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs). In addition, single-component-based all-PSCs are also briefly discussed. The structure-property correlations of polymer acceptors are elaborated in detail. Finally, we offer our insights into the development of new electron-deficient building blocks with further optimized properties and the polymers built from them for efficient all-PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号