首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene therapy is a promising method to treat acquired and inherited diseases by introducing exogenous genes into specific recipient cells. Polymeric micelles with different nanoscopic morphologies and properties hold great promise for gene delivery system. Conventional cationic polymers, poly(ethyleneimine)(PEI), poly(L-lysine)(PLL), poly(2-dimethyla-minoethyl methacrylate)(PDMAEMA) and novel cationic polymers poly(2-oxazoline)s(POxs), have been incorporated into block copolymers and decorated with targeting moieties to enhance transfection efficiency. In order to minimize cytotoxicity, nonionic block copolymer micelles are utilized to load gene through hydrophilic and hydrophobic interactions or covalent conjugations, recently. From our perspective, properties(shape, size, and mechanical stiffness, etc.) of block copolymer micelles may significantly affect cytotoxicity, transfection efficiency, circulation time, and load capacity of gene vectors in vivo and in vitro. This review briefly sums up recent efforts in cationic and nonionic amphiphilic polymeric micelles for gene delivery.  相似文献   

2.
Polyion complex (PIC) micelles have gained an increasing interest, mainly as promising nano-vehicles for the delivery of various hydrophilic charged (macro)molecules such as DNA or drugs to the body. The aim of the present study is to construct novel functional PIC micelles bearing cell targeting ligands on the surface and to evaluate the possibility of a hydrophobic drug encapsulation. Initially, a pair of functional oppositely charged peptide-based hybrid diblock copolymers were synthesized and characterized. The copolymers spontaneously co-assembled in water into nanosized PIC micelles comprising a core of a polyelectrolyte complex between poly(L-aspartic acid) and poly(L-lysine) and a biocompatible mixed shell of disaccharide-modified poly(ethylene glycol) and poly(2-hydroxyethyl methacrylate). Depending on the molar ratio between the oppositely charged groups, PIC micelles varying in surface charge were obtained and loaded with the natural hydrophobic drug curcumin. PIC micelles’ drug loading efficiency, in vitro drug release profiles and antioxidant activity were evaluated. The preliminary results indicate that PIC micelles can be successfully used as carriers of hydrophobic drugs, thus expanding their potential application in nanomedicine.  相似文献   

3.
陈栋栋  王林  孙俊奇 《化学学报》2012,70(17):1779-1784
基于层层组装技术制备了聚烯丙基胺-葡聚糖微凝胶(记作PAH-D)/透明质酸钠(HA)膜, 将包覆有芘分子的十二烷基硫酸钠(SDS)表面活性剂胶束基于静电作用力负载到PAH-D/HA微凝胶膜中, 实现了疏水分子芘在微凝胶膜中的高效负载. 紫外-可见吸收光谱和荧光光谱证实了SDS胶束包覆的芘分子被稳定地负载在PAH-D微凝胶膜中. 透过光谱表明负载有芘分子的(PAH-D/HA)*10微凝胶膜在可见光区仍保持良好光学透过性. 芘在膜中的负载量可以通过改变PAH-D/HA微凝胶膜的沉积周期数和SDS胶束中包覆芘分子的浓度而实现调控. 具有光致变色性质的螺吡喃分子同样可以借助SDS胶束负载到PAH-D/HA微凝胶膜中, 制备具有光致变色性质的层层组装膜. 本工作为疏水有机分子在层层组装聚合物膜中的高效负载提供了一种简便、易行的方法.  相似文献   

4.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

5.
采用微乳液法制备了可包载脂溶性和水溶性药物的羧甲基壳聚糖十八烷基季铵盐(OQCMC)乙醇脂质体,研究了OQCMC乙醇高分子脂质体的相图、粒径和电位、对药物的包封及释放能力及共载水溶性和脂溶性荧光染料后的细胞内递送能力.结果表明:OQCMC上长链季铵盐分子的取代度和共乳化剂乙醇的加入量对相图中微乳区域的面积影响不大;微乳液法可制备包载水溶性长春新碱(VCR)、脂溶性消炎痛(IMC)或二者共载的OQCMC载药微球,微球粒径为(52.40±0.55)nm,分布均匀;微乳液体系对VCR的最大载药率为22.7%,对IMC的最大载药率为20.1%,二者共载时,VCR的最大载药率为12.2%,IMC的最大载药率为10.0%;载药微球对药物具有缓控释功能.OQCMC乙醇高聚物脂质体可有效地包载荧光染料异硫氰酸荧光素FITC(水溶性)和尼罗红(脂溶性),并将二者递送到卵巢癌HO8901细胞内.  相似文献   

6.
以全亲水接枝共聚物PPEGMEA-g-PMAA为载体材料,以甲氨喋呤(MTX)为模型药物,通过物理包埋和化学键合法制备MTX药物缓释体系,探讨了pH值、制备方法等对载药量、包埋率和释药行为等的影响,两种体系均可以通过改变pH值来控制药物的释放和释放速率。  相似文献   

7.
Polymer–drug conjugates have attracted great interest as one category of various promising nanomedicines due to the advantages of high drug‐loading capacity, negligible burst release, and improved pharmacokinetics as compared with the small molecular weight drugs or the polymeric delivery systems with physically encapsulated drugs. Herein, a new type of oxidation‐responsive polymer–drug conjugates composed of a poly(ethylene glycol) (PEG) block and a hydrophobic polyacrylate block to which Naproxen is attached through a phenylboronic ester linker is reported. The amphiphilic block copolymers are synthesized through the reversible addition–fragmentation chain transfer polymerization of the Naproxen‐containing acrylic monomer using a PEG chain transfer agent. In neutral aqueous buffer, the conjugates formed nanoparticles with diameters of ≈150–300 nm depending on the length of the hydrophobic segment. The dynamic covalent bond of the phenylboronic ester is stabilized due to the hydrophobic microenvironment inside the nanoparticles. Upon exposure to H2O2, the phenylboronic ester is oxidized rapidly into the phenol derivative which underwent a 1,6‐elimination reaction, releasing the intact Naproxen. The rate of drug release is influenced by the concentration of H2O2 and the hydrophobic block length. This type of oxidation‐responsive polymer–drug conjugate is feasible for other drugs containing hydroxyl group or amino group.

  相似文献   


8.
以聚(ε-己内酯-b-L-丙交酯)/聚乙二醇单甲醚(P(CL-b-LLA)-b-mPEG)和聚(ε-己内酯-b-D,L-丙交酯)/聚乙二醇单甲醚(P(CL-b-DLLA)-b-mPEG)两种两亲嵌段共聚物为载体,选择了物理状态完全不同、而疏水性相近的吲哚美辛和维生素E为模型药物,研究了药物包载对高分子胶束形态的影响.发现两种药物在高分子胶束内部的增溶均会导致胶束形态发生显著改变,变化行为与胶束内核的结晶性和药物疏水性有关.另外,还研究了两种嵌段共聚物的载药性能,发现非结晶性疏水内核共聚物的药物包载率明显大于可结晶疏水内核的共聚物.  相似文献   

9.
Drug forms based polymer carriers of prolong action were created for toxicologic effect of drug to be reduced in spite of long treatment of diseases. In present work a number of synthesis and natural polymers have been studied as carriers of antituberculous drugs for controlled delivery application. Following as drugs as isoniazid and ethionamide were incorporated into polymeric matrix (segmented polyurethanes, polyvinyl alcohol) and chemically bound with the polymer chain by covalent or electrostatic forces (aldehyde- and carboxymethylderivatives of polysaccharides). Biodegradation of polymeric systems and the release of drugs were studied by various physico-chemical methods. It was shown that the drug release depends of method of the immobilization, type of the drug/polymer bonding, drug loading. The bacteriostatic activity of obtained systems was determined. The possibility of tuberculosis treatment was proved in experiments of animals.  相似文献   

10.
A large range of nanoparticles have been developed to encapsulate hydrophobic drugs. However, drug loading is usually less than 10 % or even 1 %. Now, core–shell nanoparticles are fabricated having exceptionally high drug loading up to 65 % (drug weight/the total weight of drug‐loaded nanoparticles) and high encapsulation efficiencies (>99 %) based on modular biomolecule templating. Bifunctional amphiphilic peptides are designed to not only stabilize hydrophobic drug nanoparticles but also induce biosilicification at the nanodrug particle surface thus forming drug‐core silica–shell nanocomposites. This platform technology is highly versatile for encapsulating various hydrophobic cargos. Furthermore, the high drug loading nanoparticles lead to better in vitro cytotoxic effects and in vivo suppression of tumor growth, highlighting the significance of using high drug‐loading nanoparticles.  相似文献   

11.
聚乙二醇-聚乳酸共聚物药物载体   总被引:3,自引:0,他引:3  
李晓然  袁晓燕 《化学进展》2007,19(6):973-981
本文综述了聚乙二醇与聚乳酸共聚亲水改性的最新进展, 包括嵌段和星型结构聚乙二醇-聚乳酸共聚物(PEG-PLA)及其端基化衍生物的合成。同时概述了该共聚物以胶束、微粒、水凝胶和囊泡形式担载亲水、疏水及蛋白质类药物的应用,特别介绍了静电纺丝制备的PEG-PLA超细纤维载体及其释药特性。  相似文献   

12.
Poly(2-oxazoline)s (POx) bottle-brush brushes have excellent biocompatible and lubricious properties, which are promising for the functionalization of surfaces for biomedical devices. Herein, a facile synthesis of POx is reported which is based bottle-brush brushes (BBBs) on solid substrates. Initially, backbone brushes of poly(2-isopropenyl-2-oxazoline) (PIPOx) were fabricated via surface initiated Cu0 plate-mediated controlled radical polymerization (SI-Cu0CRP). Poly(2-methyl-2-oxazoline) (PMeOx) side chains were subsequently grafted from the PIPOx backbone via living cationic ring opening polymerization (LCROP), which result in ≈100 % increase in brush thickness (from 58 to 110 nm). The resultant BBBs shows tunable thickness up to 300 nm and high grafting density (σ) with 0.42 chains nm−2. The synthetic procedure of POx BBBs can be further simplified by using SI-Cu0CRP with POx molecular brush as macromonomer (Mn=536 g mol−1, PDI=1.10), which results in BBBs surface up to 60 nm with well-defined molecular structure. Both procedures are significantly superior to the state-of-art approaches for the synthesis of POx BBBs, which are promising to design bio-functional surfaces.  相似文献   

13.
Poly(ethylene glycol)-b-polyphosphoester (PEG-b-PPE) block copolymer nanoparticles are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE block of these PEG-b-PPE amphiphilic copolymers. A PEG-b-PPE copolymer bearing pendant vinyl groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety. Ketoconazole was used as model for hydrophobic drugs. Comparison of the drug loading with PEG-b-PPE bearing shorter pendant groups is reported evidencing the key role of the structure of the pendant group on the PPE backbone. Finally, a first evidence of the biocompatibility of these novel PEG-b-PPE copolymers was achieved by performing cytotoxicity tests. The PEG-b-PPE derived by tocopherol was evidenced as particularly promising as delivery system of poorly water-soluble drugs.  相似文献   

14.
The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent.  相似文献   

15.
In order to be used as drug carriers, Pluronic micelles require stabilization to prevent degradation caused by significant dilution accompanying IV injection. This article studies three routes of Pluronic micelle stabilization. The first route was direct radical crosslinking of micelles cores which resulted in micelle stabilization. However, this compromised the drug loading capacity of Pluronic micelles. In the second route, a small concentration of vegetable oil was introduced into diluted Pluronic solutions. This decreased micelle degradation upon dilution while not compromising the drug loading capacity of oil-stabilized micelles. The third route was a novel technique based on polymerization of the temperature-responsive LCST hydrogel in the core of Pluronic micelles. The hydrogel phase was in a swollen state at room temperature, which provided a high drug loading capacity of the system. The hydrogel collapsed at physiological temperatures which locked the core of micelles thus preventing them from fast degradation upon dilution. This new drug delivery system was called Plurogel®. Phase transitions in Plurogel® caused by variations in temperature or concentration were studied by the EPR. The effect of Pluronic concentration in the incubation medium on the intracellular uptake of two anti-cancer drugs was studied. At low Pluronic concentrations, when the drugs were located in the hydrophilic environment, drug uptake was increased, presumably due to the effect of a polymeric surfactant on the permeability of cell membranes. In contrast, when the drugs were encapsulated in the hydrophobic cores of Pluronic micelles, drug uptake by the cells was substantially decreased. This may be advantageous in the prevention of undesired drug interactions with normal cells. Ultrasonication enhanced intracellular drug uptake from dense Pluronic micelles. These findings permitted the formulation of a new concept of a localized drug delivery.  相似文献   

16.
Poor solubility often leads to low drug efficacy. Encapsulation of water‐insoluble drugs in polymeric nanoparticles offers a solution. However, low drug loading remains a critical challenge. Now, a simple and robust sequential nanoprecipitation technology is used to produce stable drug‐core polymer‐shell nanoparticles with high drug loading (up to 58.5 %) from a wide range of polymers and drugs. This technology is based on tuning the precipitation time of drugs and polymers using a solvent system comprising multiple organic solvents, which allows the formation of drug nanoparticles first followed by immediate precipitation of one or two polymers. This technology offers a new strategy to manufacture polymeric nanoparticles with high drug loading having good long‐term stability and programmed release and opens a unique opportunity for drug delivery applications.  相似文献   

17.
18.
This research investigated the possible utilization of amphiphilic N-octyl-N-trimethyl chitosan (OTMCS) derivatives in solublization and controlled release of 10-hydroxycamptothecin (10-HCPT), a hydrophobic anticancer drug. The release behavior of the 10-HCPT-OTMCS micelles was measured and compared to that of a commercial 10-HCPT lyophilized powder in vitro and in vivo. This research also examined the effects of chemical structure of the chitosan derivatives and the micellar preparation conditions on the encapsulation efficiency, drug loading content, and particle size of the polymeric micelles. The results showed that these chitosan derivatives were able to self-assemble and form spherical shape polymeric micelles with an average particle size range of 24–280 nm and a drug loading content of 4.1–32.5%, depending on the modified structures and loading procedures. The solubility of 10-HCPT in aqueous fluid was increased about 80,000-fold from 2 ng/ml in water to 1.9 mg/ml in OTMCS micellar (degree of octyl and trimethyl substitution is 8% and 54%, respectively) solution. In addition, OTMCS was able to modulate the in vitro release of 10-HCPT and improve its pharmacokinetic properties and lactone ring stability in vivo. These data suggested the possible utilization of the amphiphilic micellar chitosan derivatives as carriers for hydrophobic drugs for improving their delivery and release properties.  相似文献   

19.
Hanson JA  Li Z  Deming TJ 《Macromolecules》2010,43(15):6268-6269
Block copolymer micelles have been used extensively as carriers for therapeutic drugs and diagnostic molecules. Here, we report the synthesis of nonionic, block copolypeptides, K(P) (x)(rac-L)(y), which have a "reversed" rod-coil structure composed of a hydrophilic, rod-like, α-helical segment attached to a disordered, racemic hydrophobic segment. The self assembly of these block copolypeptides in water was studied, and their compositions were optimized to identify a sample, K(P) (100)(rac-L)(10), which is able to form well defined micelles that are very stable against dilution, high temperatures, and various media. Micelle structure was determined using a combination of electron microscopy and dynamic light scattering measurements. The potential of these micelles as drug delivery carriers was evaluated by encapsulation of the anticancer drug camptothecin. The drug containing micelles were found to be stable.  相似文献   

20.
The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer–drug conjugates. Current dendrimer–drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer–drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号