首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In recent years, as an emerging dynamic bonding, silyl ether linkages have been concerned and applied. However, the reprocessability of vitrimers based on it is far from satisfactory because of the inactive dynamic exchange reaction. At the same time, the mechanical properties of polysiloxane elastomers are poor because of the high flexibility of polysiloxane molecular chains and weak intermolecular forces. Herein, we have successfully synthesized a PDMS elastomer incorporating Zn(II)-amine coordination bonds as sacrificial units, which are crosslinked through dynamic silyl ether linkages. Importantly, the presence of Zn ions promotes the exchange between the silyl ether linkages and hydroxyl groups. The elastomers exhibited excellent mechanical properties (35 times improvement in toughness) and outstanding reprocessability. The mechanical property recovery of the PDMS elastomers reached approximately 90% after four reprocessing cycles. Meanwhile, small-molecule simulation experiments were conducted to verify the significant catalytic effect of Zn (II) ions as Lewis acid catalysts on the exchange reaction of silyl ether linkages and hydroxyl groups. In a word, this work provides a facile strategy to simultaneously enhance the mechanical properties and reprocessing performance of silyl ether-linked polysiloxane elastomers.  相似文献   

2.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

3.
《高分子科学》2019,(11):中插8,1119-1129
A reversible disulfide bond-based self-healing polyurethane with triple shape memory properties was prepared by chain extending of random copolymer poly(lactide-co-caprolactone)(PCLA),hexamethylene diisocyanate (HDI),polytetrahydrofuran(PTMEG),and 4,4'-aminophenyl disulfide.The chemical structures were characterized using~1H nuclear magnetic resonance (~1H-NMR)spectroscopy,Fourier transform infrared spectroscopy (FTIR),and gel permeation chromatography (GPC).The thermal properties,selfhealing properties,triple-shape memory effect,and quantitative shape memory response were evaluated by differential scanning calorimetry (DSC),tensile tests,two-step programming process thermal mechanical experiments,and subsequent progressive thermal recovery.The self-healing mechanism and procedures were investigated using polarizing optical microscopy (POM) and an optical profiler.It was concluded that self-healing properties (up to 60%) and triple-shape memory properties around 35 and 500C (with shape fixation ratios of 94.3%and 98.3%,shape recovery ratios of 76.6%and 85.1%,respectively) were integrated to the shape memory polyurethane.As-prepared polyurethane is expected to have potential applications in multi-shape coatings,films,and step-by-step deploying structures.  相似文献   

4.
基于羧基和环氧基的高反应活性,以甲基丙烯酸缩水甘油醚与乙烯共聚物(PE-GMA),甲基丙烯酸与乙烯共聚物(EAA)为原料,采用熔融共混的方法制备了交联聚烯烃材料。 采用差示扫描量热仪(DSC)和动态热机械分析仪(DMA)研究了其热力学性能及其形状记忆效应。 结果表明,材料具备很宽的熔融温度范围(40~110 ℃)和很宽的晶体尺寸分布。 利用材料晶体温度记忆的特性,成功地实现了材料的双重形状记忆效应,多重形状记忆效应和双向形状记忆效应。 利用石墨烯材料的光热效应,研究了材料的光触发形状记忆效应。 我们提出设计材料本体“温度梯度”的策略,实现了材料在无外力条件下的双向形状记忆效应。  相似文献   

5.
The epoxy–POSS hybrid networks with POSS bound as pendant cages or with untethered POSS dispersed in the matrix were prepared and their structure was controlled. Formation of the hybrid network was followed by chemorheology. In situ development of physical crosslinks in the pregel stage of the network build-up was observed in case of the hybrids with tethered POSS. The complex effect of POSS on mechanical properties is manifested by either increase or decrease in rubbery modulus of different hybrids. This behavior reflects (a) reinforcement due to POSS hard aggregates, (b) diminishing of crosslinking density of the epoxy network by tethered monofunctional POSS and (c) physical crosslinking via POSS domains. Theories of network formation and rubbery elasticity as well as the model of mechanical behavior of particulate composites were applied to interpret the mechanical properties of the hybrids.  相似文献   

6.
以三羟甲基丙烷三缩水甘油醚(TTE)为基体, 2,2′-(1,4-亚苯基)-双[4-硫醇1,3,2-二氧杂戊烷](BDB)和3,3-二硫代二丙酸(DTDPA)为交联剂, 通过环氧-巯基“点击”反应和环氧-羧酸酯化反应, 制备了基于多重动态共价键(硼酸酯键、 二硫键和酯键)的环氧类玻璃网络. 利用红外光谱和拉曼光谱对其结构进行了表征, 结果表明, 环氧类玻璃中不仅存在硼酸酯键、 二硫键和酯键, 还存在可逆氢键, 并且大量氢键的存在能提高环氧类玻璃的交联度. 对所得环氧网络的热稳定性、 热机械性能和力学性能进行了测试, 并对基于多重动态共价键环氧网络进行了自修复、 焊接、 形状记忆和再加工能力测试. 结果表明, 在80 ℃下可实现网络的完全自修复、 再加工与焊接, 且焊接后样品的力学性能(拉伸强度)恢复率在80%以上, 具有优异的功能性.  相似文献   

7.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   

8.
Graphene/epoxy shape memory composites were fabricated with graphene from a simple and low cost method of chemical oxidation-reduction process. The fine and homogeneous dispersion of graphene throughout the epoxy matrix with different graphene mass fraction were prepared and their properties were investigated. It was found that storage elastic modulus rose with the increase of graphene mass fraction, which indicated that the recovery stress of graphene/epoxy composites would be greater than that of the pure epoxy. The graphene/epoxy composites with lower content graphene showed a good shape memory effect and a recovering speed superior to the pure epoxy.  相似文献   

9.
The crosslinking chemistry of an anhydride-cured epoxy resin, in the first 200–400 nm adjacent to a carbonized polyacrylonitrile (PAN) surface (a model for the surface of a carbon fiber), is significantly affected by the humidity history of that surface. Prior humid aging of the carbonized PAN surface increases the subsequent rate of consumption of anhydride curing agent, and decreases the yield of ester crosslinked products. The crosslinking chemistry of an amine-cured epoxy resin appears unchanged by the presence of the carbonized surface. Dynamic mechanical analysis (DMA) of unidirectional composites made from carbon fibers and the above epoxy resin matrices shows that the damping characteristics of composites made with an epoxy–anhydride matrix are sensitive to the preconditioning history of the carbon fibers, while composites made with an epoxy–amine matrix are unaffected by the preconditioning history of the fibers. Partial removal of the carbon fiber surface coating by dichloromethane extraction does not change the sensitivity of the composites to fiber preconditioning history. These results are rationalized on the basis of the effect moisture adsorbed by the carbonized PAN and by the carbon fiber has on the epoxy resin crosslinking processes.  相似文献   

10.
In this study a series of hyperbranched modified shape‐memory polymers were subjected to constrained shape recoveries in order to determine their potential use as thermomechanical actuators. Materials were synthesized from a diglycidyl ether of bisphenol A as base epoxy and a polyetheramine and a commercial hyperbranched poly(ethyleneimine) as crosslinker agents. Hyperbranched polymers within the structure of the shape‐memory epoxy polymers led to a more heterogeneous network that can substantially modify mechanical properties. Thermomechanical and mechanical properties were analyzed and discussed in terms of the content of hyperbranched polymer. Shape‐memory effect was analyzed under fully and partially constrained conditions. When shape recovery was carried out with fixed strain a recovery stress was obtained whereas when it was carried out with a constraining stress the material performs mechanical work. Tensile tests at TgE′ showed excellent values of stress and strain at break (up to 15 MPa and almost 60%, respectively). Constrained recovery performances revealed rapid recovery stress generation and unusually high recovery stresses (up to 7 MPa) and extremely high work densities (up to 750 kJ/m3). The network structure of shape‐memory polymers was found to be a key factor for actuator‐like applications. Results confirm that hyperbranched modified‐epoxy shape memory polymers are good candidates for actuator‐like shape‐memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1002–1013  相似文献   

11.
Room-temperature phosphorescence (RTP) polymers, whose emission can persist for a long period after photoexcitation, are of great importance for practical applications. Herein, dynamic covalent boronic ester linkages with internal B−N coordination are incorporated into a commercial epoxy matrix. The reversible dissociation of B−N bonds upon loading provides an efficient energy dissipation pathway for the epoxy network, while the rigid epoxy matrix can inhibit the quenching of triplet excitons in boronic esters. The obtained polymers exhibit enhanced mechanical toughness (12.26 MJ m−3), ultralong RTP (τ=540.4 ms), and shape memory behavior. Notably, there is no apparent decrease in the RTP property upon prolonged immersion in various solvents because the networks are robust. Moreover, the dynamic bonds endow the polymers with superior reprocessablity and recyclability. These novel properties have led to their potential application for information encryption and anti-counterfeiting.  相似文献   

12.
Model epoxy networks, with variations in crosslink density and in epoxy monomer rigidity, were prepared to study how the network structure affects modulus, Tg, and toughness/toughenability of epoxy resins. Diglycidyl ether of bisphenol‐A and diglycidyl ether of tetramethyl‐bisphenol‐A, along with the corresponding chain extenders, were chosen to study how monomer backbone rigidity and crosslink density affect physical and mechanical properties of epoxies. The present study indicates that, as expected, the backbone rigidity of the epoxy network, not the crosslink density alone, will strongly influence modulus and Tg of epoxy resins. Upon rubber toughening, it is found that the rigidity of the epoxy backbone and/or the nature of the crosslinking agent utilized are most critical to the toughenability of the epoxy. That is, the well‐known correlation between toughenability and the average molecular weight between crosslinks (Mc) does not necessarily hold true when the nature of epoxy backbone molecular mobility is altered. The potential significance of the present findings for a better design of toughened thermosets for structural applications is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2137–2149, 1999  相似文献   

13.
The utilization of epoxy shape memory polymer composite (SMPCs) as engineering materials for deployable structures has attracted considerable attention in recent decades due to high strength and satisfactory stiffness in comparison with shape memory polymers (SMPs). Knowledge of static and dynamic mechanical properties is essential for analyzing structural behavior and recovery properties, especially for new epoxy SMPCs. In this paper, a new weave reinforced epoxy shape memory polymer composite was prepared with satin weave technique and resin transfer molding technique. Uniaxial tensile tests and dynamic mechanical analysis were carried out to obtain basic mechanical properties and glass transition temperatures, respectively.The tensile strength and breaking elongation of warp specimens were comparable with those of weft specimens. The increment of elastic modulus and hysteresis loop areas became smaller with loading cycles, meaning that cyclic tests could obtain approximate stable mechanical properties. For dynamic mechanical properties, glass transition temperature (Tg) obtained from storage modulus curves was lower than that determined from tan delta curves and Tgs in the warp and weft directions were similar (29.4 °C vs 29.7 °C). Moreover, the storage modulus in response to Tg was two orders of magnitude less than that with respect to low temperature, which demonstrated the easy processibility of epoxy SMPCs near glass transition temperature. In general, this study could provide useful observations and basic mechanical properties of new epoxy SMPCs.  相似文献   

14.
The application of poly(2,6-dimethyl-1,4-phenylene ether), PPE, as a matrix material for continuous carbon fibre reinforced composites has been studied. Due to the intractable nature of PPE melt impregnation is not feasible and a novel impregnation route, using epoxy resin as a reactive solvent, was developed. The introduction of epoxy resin results in enhanced flow and a reduced processing temperature, enabling the processing of PPE and the preparation of high quality composites. Upon curing, phase separation is initiated and epoxy resin is converted into a second phase. In composites, epoxy resin preferentially accumulates at the polar fibre surface, resulting in an epoxy layer around the fibres, providing a high level of interfacial adhesion. For a high fibre volume fraction (> 50%) this results in the ultimate morphology of epoxy coated fibres in a neat PPE matrix. Due to this unique morphology the composite materials reveal outstanding mechanical properties in terms of interlaminar toughness and impact performance.  相似文献   

15.
朱光明 《高分子科学》2016,34(4):466-474
Electroactive shape memory composites were synthesized using polybutadiene epoxy(PBEP) and bisphenol A type cyanate ester(BACE) filled with different contents of carbon black(CB). Dynamic mechanical analysis(DMA), scanning electron microscopy(SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.  相似文献   

16.
Recently, increasingly growing efforts have been devoted to incorporating dynamic covalent bonds into covalently crosslinked networks to address the persistent trade-offs between chemical crosslinking and malleability. Herein, a series of dynamic aminal bond crosslinked polybutadiene rubbers(PAPB) are prepared by crosslinking aldehyde group-terminated polybutadiene rubber(APB) with piperazine. By varying the molecular weight of APB, the crosslinking density of PAPB is changed, which offers the platform to regulate the mechanical characteristics and dynamic properties. Specially, with the decrease of APB molecular weight, i.e. with the increase of crosslinking density, the modulus of PAPB gradually increases while the elongation at break conversely decreases, and the activation energy for network rearrangement initially decreases and then increases. The resultant PAPB exhibit vitrimer-like behaviors that can alter the network topologies at elevated temperatures without the loss of structural integrity through dissociative aminal exchange reactions, while the protic source can accelerate aminal dissociation and result in network dissolution even at room temperature. Due to the aminal exchange, PAPB are thermally malleable and can almost restore the original mechanical characteristics after recycling; besides, they are capable of healing at a relatively low crosslinking density.  相似文献   

17.
The utilization of epoxy shape memory polymers (SMPs) as engineering materials for deployable structures has attracted considerable attention due to their excellent thermo-mechanical endurance and satisfactory processability. Knowledge of static and dynamic mechanical properties is essential for analyzing structural behavior and recovery, especially for new epoxy SMPs. In this paper, a new epoxy SMP was prepared with epoxy and aromatic amine curing agent. Uniaxial tensile tests and digital image correlation were used to obtain static mechanical properties. Dynamic mechanical analysis was carried out to evaluate glass transition temperatures that corresponded to the heat in the recovery process.It was found that elastic modulus, Poisson’s ratio and shear modulus are 1413 MPa, 0.35 and 591 MPa, respectively. The beginning of glass transition temperature of 37.4 °C could be effectively achieved by electrical heaters, validating the shape memory properties of epoxy SMPs. In general, this study could provide useful observations and basic mechanical properties of epoxy SMPs.  相似文献   

18.
Biobased epoxy was synthesized from diglycidyl ether of bisphenol A (DGEBA) and epoxidized castor oil (ECO) at a ratio of 80:20. Carbon fiber (CF) was used as a reinforcing agent to fabricate composites using biobased epoxy as matrix. Mechanical, Thermal and morphological properties of neat epoxy and biobased epoxy composites were investigated. Mechanical test results revealed that the composites prepared using five plies were higher than those with three plies and one ply respectively. This phenomenon revealed the effective reinforcing effect of carbon fiber due to its higher strength and higher crosslinking density. The composites also demonstrate high damping behavior as compared with neat epoxy and biobased epoxy blend. With increasing number of plies the composites thermal properties also shows an improvement. The SEM micrographs of the composites depicted that the biobased epoxy was fully adhered to the carbon fiber, thus representing a strong interface between CF/epoxy matrix.  相似文献   

19.
Functionally dual gradient type of carbon fiber reinforced epoxy composites, in which crosslinking density of epoxies and content of carbon fibers are gradually varied through the thickness, were fabricated by using centrifugal force. The spatial variation of fiber content and the crosslinking density change of epoxies were confirmed by checking densities and glass transition temperatures, respectively, along the thickness. The mechanical properties of the polymer composites were also measured.  相似文献   

20.
王永坤 《高分子科学》2016,34(11):1354-1362
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号