首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Precisely controlling multiple components of functional materials with well-defined shapes and dimensions on the micro/nanometer scale promises to provide new electronic, magnetic, mechanical, and optical properties for novel sensors, circuits, and other materials application. Here for the first time we introduce a novel method to reliably pattern strawberry-like microspheres by employing magnetically directed and accelerated self-assembly of nano/microparticles in aqueous solution, without the use of a template (such as molds or grooves). The results show that 100-1000 nm paramagnetic "decorating particles" rapidly self-assembled onto the surface of fluorescent 4-5 mum spherical magnetized "core particles", producing strawberry-like particles with stable and precisely arranged microstructures. Magnetic CrO2 nanorods, approximately 60 nm in diameter and 300 nm long, attached to the nonplanar surface of the 4-5 microm polystyrene core microspheres, serve as nanometer magnetic traps, so as to attract and confine paramagnetic decorating particles. The ease and speed, with which these particles can be fabricated with the aid of magnetic force, and the flexibility to tailor their chemical and physical properties through the choice of decorating particles, should facilitate their use for practical application in materials science, biology, and technology.  相似文献   

2.
Choi S  Park JK 《Lab on a chip》2007,7(7):890-897
We report a microfluidic separation and sizing method of microparticles with hydrophoresis--the movement of suspended particles under the influence of a microstructure-induced pressure field. By exploiting slanted obstacles in a microchannel, we can generate a lateral pressure gradient so that microparticles can be deflected and arranged along the lateral flows induced by the gradient. Using such movements of particles, we completely separated polystyrene microbeads with 9 and 12 microm diameters. Also, we discriminated polystyrene microbeads with diameter differences of approximately 7.3%. Additionally, we measured the diameter of 10.4 microm beads with high coefficient of variation and compared the result with a conventional laser diffraction method. The slanted obstacle as a microfluidic control element in a microchannel is analogous to the electric, magnetic, optical, or acoustic counterparts in that their function is to generate a field gradient. Since our method is based on intrinsic pressure fields, we could eliminate the need for external potential fields to induce the movement of particles. Therefore, our hydrophoretic method will offer a new opportunity for power-free and biocompatible particle control within integrated microfluidic devices.  相似文献   

3.
The K-Ras4B GTPase is a major oncoprotein whose signaling activity depends on its correct localization to negatively charged subcellular membranes and nanoclustering in membrane microdomains. Selective localization and clustering are mediated by the polybasic farnesylated C-terminus of K-Ras4B, but the mechanisms and molecular determinants involved are largely unknown. In a combined chemical biological and biophysical approach we investigated the partitioning of semisynthetic fully functional lipidated K-Ras4B proteins into heterogeneous anionic model membranes and membranes composed of viral lipid extracts. Independent of GDP/GTP-loading, K-Ras4B is preferentially localized in liquid-disordered (l(d)) lipid domains and forms new protein-containing fluid domains that are recruiting multivalent acidic lipids by an effective, electrostatic lipid sorting mechanism. In addition, GDP-GTP exchange and, thereby, Ras activation results in a higher concentration of activated K-Ras4B in the nanoscale signaling platforms. Conversely, palmitoylated and farnesylated N-Ras proteins partition into the l(d) phase and concentrate at the l(d)/l(o) phase boundary of heterogeneous membranes. Next to the lipid anchor system, the results reveal an involvement of the G-domain in the membrane interaction process by determining minor but yet significant structural reorientations of the GDP/GTP-K-Ras4B proteins at lipid interfaces. A molecular mechanism for isoform-specific Ras signaling from separate membrane microdomains is postulated from the results of this study.  相似文献   

4.
利用微通道法乳化技术原理,研制了一个可拆卸T型玻璃微通道装置,以聚乙烯醇水溶液为连续相,聚(乳酸-co-羟基乙酸)(PLGA)的二氯甲烷溶液为分散相,制备了单分散的PLGA微球.考察了乳化剂用量、连续相和分散相流速以及PLGA浓度对形成的液滴平均粒径和变异系数(CV值)的影响.结果表明,增大乳化剂用量,提高连续相流速或降低分散相流速,制备得到的PLGA微球直径减小;分散相浓度在5~20 g/L之间变化时,其对微球直径的影响有限.PLGA微球表面光滑无孔,且内部是实心的.用本装置制备得到的PLGA微球,其粒径范围在30~200μm之间,CV值在15%以下,最低可至3%.该方法可使用挥发性有机溶剂作为分散相而且能避免微球制备时易堵塞等问题,可应用于药物缓控释领域中微米级单分散微球的制备.  相似文献   

5.
M Kawano  H Watarai 《The Analyst》2012,137(18):4123-4126
A new magnetophoresis method to determine the magnetic susceptibility of single nano/microparticles was developed by applying Brownian motion analysis to determine the size of the particle. This method could measure simultaneously both the magnetophoretic velocity and the radius of the identical single nano/microparticles, which are necessary for the determination of the magnetic susceptibility of the particle. The advantage of this method was demonstrated by the measurement of the diamagnetic susceptibilities of polystyrene particles 500 nm-3 μm in diameter in a paramagnetic 0.5 M manganese(ii) chloride solution under a high magnetic field gradient of 5180 T(2) m(-1) generated by a small magnetic circuit.  相似文献   

6.
We report the self-assembly of a single species or a binary mixture of microparticles in ionic liquid-in-water Pickering emulsions, with emphases on the interfacial self-assembled particle structure and the partitioning preference of free particles in the dispersed and continuous phases. The particles form monolayers at ionic liquid-water interfaces and are close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. In contrast to those at oil-water interfaces, no long-range-ordered colloidal lattices are observed. Interestingly, other than equilibrating at the ionic liquid-water interfaces, the microparticles also exhibit a partitioning preference in the dispersed and continuous phases: the sulfate-treated polystyrene (S-PS) and aldehyde-sulfate-treated polystyrene (AS-PS) microparticles are extracted to the ionic liquid phase with a high extraction efficiency, whereas the amine-treated polystyrene (A-PS) microparticles remain in the water phase.  相似文献   

7.
导电ZrO_2复合纳米材料的制备和表征   总被引:5,自引:0,他引:5  
用溶胶-凝胶方法,结合后焙烧处理,得到系列ZrO_2纳米材料及其与碳膜组成 的复合材料,XRD,Raman,SEM及电电性能测试表明:复合ZrO_2纳米材料有较小的 粒径(6.85 nm),晶型为立方相,有较均匀的二次粒子分布,其中碳以碳膜形式 存在,复合材料有好的导电性能。将碳膜在823K氧化后,立方相转化为四方体相, 粒径增加,无导电性能。  相似文献   

8.
Understanding the interactions between nanoparticles (NPs) and biological matter is a high-priority research area because of the importance of elucidating the physical mechanisms underlying the interactions leading to NP potential toxicity as well as NP viability as therapeutic vectors in nanomedicine. Here, we use two model membrane systems, giant unilamellar vesicles (GUVs) and supported monolayers, to demonstrate the competition between adhesion and elastic energy at the nanobio interface, leading to different mechanisms of NP-membrane interaction relating to NP size. Small NPs (18 nm) cause a "freeze effect" of otherwise fluid phospholipids, significantly decreasing the phospholipid lateral mobility. The release of tension through stress-induced fracture mechanics results in a single microsize hole in the GUVs after interaction. Large particles (>78 nm) promote membrane wrapping, which leads to increased lipid lateral mobility and the eventual collapse of the vesicles. Electrochemical impedance spectroscopy on the supported monolayer model confirms that differently sized NPs interact differently with the phospholipids in close proximity to the electrode during the lipid desorption process. The time scale of these processes is in accordance with the proposed NP/GUV interaction mechanism.  相似文献   

9.
Residual ligands from colloidal synthesis of nanoparticles influence adsorption of nanoparticles to supports and may complicate fabrication of nanoparticle-decorated microparticles. In this work, we studied the adsorption of completely ligand-free metal nanoparticles and controlled ligand-functionalized nanoparticles to chemically inert microparticle supports. Adsorption of ligand-free silver nanoparticles to barium sulfate microparticle supports is a quantitative, nonreversible process following Freundlich adsorption isotherm. However, adsorption efficiency is very sensitive to ligand concentration applied during laser-based synthesis of silver nanoparticles: exceeding a specific threshold concentration of 50 μmol/L citrate equal to a nanoparticle ligand surface coverage of about 50%, results in an almost complete prevention of nanoparticle adsorption because of electrosteric repulsion by ligand shell. Laser-based synthesis of nanoparticle-decorated microparticles is demonstrated with a variety of metal nanoparticles (Ag, Au, Pt, Fe) and supporting microparticles (calcium phosphate, titanium dioxide, barium sulfate) with application potential in heterogeneous catalysis or biomedicine where ligand control offers extra value, like enhanced catalytic activity or biocompatibility.  相似文献   

10.
Superparamagnetic particles have been attractive for molecular diagnostics and analytical chemistry applications due to their unique magnetic properties and their ability to interact with various biomolecules of interest. This paper presents a critical overview of magnetic nano ‐ and microparticles used as a solid phase for extraction and purification of DNAs. The mechanisms of DNA binding to the surface of functionalised magnetic particles are described. The most widely used materials including silica supports, organic polymers and other materials, mostly containing magnetite or paramagnetic metallic elements are reviewed. The main application areas of magnetic particles for DNA separation are briefly described.  相似文献   

11.
TiO2 nano particles with photo catalytic property were mixed with silica alkoxides solution with HAuCl4/4H2O. STS02 (purchased from Ishihara Sangyo Kaisha, Ltd.) was used as TiO2 nano particles. The average size of TiO2 nano particles was 7 nm in diameter. The gel film coated on glass substrate was heated and then HAuCl4/4H2O was thermally reduced at 390 degree. The coated silica gel film doped with HAuCl4/4H2O and TiO2 nano particles was turned into light blue from colorless gel film after heat treatment. The optical absorption spectrum showed the absorption peak of the film heated at 390 degree shifted to at about 650 nm compare to SiO2 film doped with Au nano particles without TiO2 nano particles that had absorption peak at 542 nm. On the other hand, the film formed from coating solution incorporated TiAA (titanium tetraisopropoxide chelated by acetyl acetone) as TiO2 source instead of TiO2 nano particles had absorption peak at 550 nm. That means there was no effect on formation of Au nano particles when TiAA was incorporated. The average size of the particles was found to be about 23 nm in diameter by TEM observation. Furthermore EDX (Energy Dispersive X-ray Fluorescence Spectrometer) analysis of nano particles in the film indicated that Au-TiO2 nano hybrid particles were formed. Simulation results also supported that the size in diameter of Au nano particles had little influence on the absorption coefficient of the silica film doped with Au nano particles.  相似文献   

12.
13.
A novel technique in controlling the size of SiO2 nano‐particles in the preparation of Nafion/SiO2 composite membranes via in situ sol–gel method, as well as the effects of nano‐particle size on membrane properties and cell performance, is reported in this paper. Nafion/SiO2 composite membranes containing SiO2 nano‐particles with four different diameters (5 ± 0.5, 7 ± 0.5, 10 ± 1, and 15 ± 2 nm) are fabricated by altering the reactant concentrations during in situ sol–gel reaction. Sequentially, size effects of SiO2 nano‐particles on membrane properties and cell performance are investigated by SEM/EDAX, TEM, TGA, mechanical tensile, and single cell tests, etc. The results suggest that 10 nm is a critical diameter for SiO2 incorporated into Nafion matrix, exhibiting desirable physico‐chemical properties for operation at elevated temperature and low humidity. At 110°C and 59% RH, the output voltage of the cell equipped with Nafion/SiO2 (10 nm) obtains an output voltage of 0.625 V at 600 mA/cm2, which is 50 mV higher than that of unmodified Nafion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

15.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

16.
A novel potentiometric strategy based on functionalized magnetite nanoparticles and microparticles were compared with the classical potentiometric strategy. This strategy provided nano‐ and microsized particles that were highly dispersed and coated with ionophore and plasticizer to promote an in situ cooperative ion‐pairing interaction between the ionophore and the analyte present in inner solution of sensor membrane, compared to the classical technique. Three amlodipine (AML) sensors were constructed using functionalized nanoparticles in sensor 1; microparticles in sensor 2, as ionophores, and the polymeric membrane ionophoric property in sensor 3.  相似文献   

17.
Summary: The paper concerns the preparation and characterization of hydrogel microparticles based on exopolysaccharide (Gellan, Xanthan) unsaturated derivatives and respectively on cyclodextrin as well as their application for some hydrosoluble and liposoluble drugs inclusion. In the first step the polysaccharide and cyclodextrin unsaturated esters (maleate, acrylate) were synthesized and their hydrogel forming capacity was tested using a grafting-crosslinking free-radical reaction with N-isopropyl acrylamide (NIPAm), at room temperature. For a better control of the crosslinking degree N,N' methylene-bis-acrylamide (BIS), replaced by cyclodextrin tri-acrylate (A-CD) in a few experiments, was used. The microparticles were obtained by using the method in w/o emulsion, in which the dispersed aqueous phase is the reaction mixture and the oil phase is hexane. The particles containing polysaccharide esters showed an average diameter around 100 µm when crosslinking was achieved with BIS. They were smaller than those crosslinked with A-CD, which are in the range of 200-300 µm; the particles based on Xanthan maleate were smaller than Gellan maleate based ones. Even much smaller particles (2-2.5 µm in diameter) were obtained by starting from A-CD grafted-crosslinked systems. The synthesized microparticles are able to include chloramphenicol, as well as progesterone; the drug is slowly released according to diffusion controlled kinetics. The application of these microparticles in emergency ophthalmic treatments is possible as a result of their thermal sensitivity; they can collapse and release the drug instantly when placed in contact with the human eye, at 37 °C.  相似文献   

18.
Antimony phosphate nanoribbons was synthesized and characterized using different techniques. Studies showed that the synthesized antimony phosphate possessed highly crystalline monoclinic SbPO4 phase with an average crystallite size of 14 nm. TEM studies showed that antimony phosphate was present both as nano ribbons and nano particles. It is observed that the nano ribbons have length in the range of 500–700 nm and width around 100–200 nm whereas the nanoparticles size in the range of 1–5 nm. The synthesized nano phosphate was studied for its efficiency as sorbent for uptake of various metal ions including uranyl ion. The results indicated that a clean separation of uranyl ion from its various binary mixtures could be achieved at optimized pH of 4.5 and equilibration period of 1 h using 0.1 g of the sorbent.  相似文献   

19.
Nanosphere lithography (NSL) has been regarded as an inexpensive, inherently parallel, high-throughput, materials-general approach to the fabrication of nanoparticle arrays. However, the order of the resulting nanoparticle array is essentially dependent on the quality of the colloidal monolayer mask. Furthermore, the lateral feature size of the nanoparticles created using NSL is coupled with the diameter of the colloidal spheres, which makes it inconvenient for studying the size-dependent properties of nanoparticles. In this work, we demonstrate a facile approach to the fabrication of a large-area, transferrable, high-quality latex colloidal mask for nanosphere lithography. The approach is based on a combination of the air/water interface self-assembly method and the solvent-vapor-annealing technique. It enables the fabrication of colloidal masks with a higher crystalline integrity compared to those produced by other strategies. By manipulating the diameter of the colloidal spheres and precisely tuning the solvent-vapor-annealing process, flexible control of the size, shape, and spacing of the interstice in a colloidal mask can be realized, which may facilitate the broad use of NSL in studying the size-, shape-, and period-dependent optical, magnetic, electronic, and catalytic properties of nanomaterials.  相似文献   

20.
Summary: pH-sensitive microgels of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared by dispersion polymerization of 2-dimethylamino ethyl methacrylate in a mixed solvent of water/ethanol. 1HNMR, FTIR and SEM were used to confirm the chemical structure and morphological properties of the resulting microgels. Dynamic Light Scattering (DLS) was used to measure the hydrodynamic diameter of the particles. SEM micrographs showed that the microgel particles have a diameter of about 100–200 nm in dry state. Mean hydrodynamic diameter of the particles at their collapsed state at pH = 9.5 was found to be about 150 nm. DLS measurements at various pH values showed that the prepared microgels have a volume phase transition around pH = 8 at which the hydrodynamic diameter decreased from about 470 nm to around 150 nm corresponding to a 32 fold change in the mean volume of a microgel particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号