首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cellular uptake of hyaluronic-acid-coated, negatively charged chitosan/triphosphate nanoparticles and that of uncoated, positively charged ones is investigated by studying cellular localization, uptake kinetics and mechanism of internalization in J774.2 macrophages, using non-phagocytic L929 fibroblasts as a control for uncoated nanoparticles. Both kinds of nanoparticles undergo endosomal escape and adopt a similar clathrin-based endocytic mechanism. The surface decoration with HA profoundly influences the kinetics of cellular uptake, with an at least two orders of magnitude slower kinetics, but also the nature of the binding on the cellular surface.  相似文献   

2.
Photothermal therapy has attracted much interest for use in cancer treatment in recent years. In this study, Cu2Se nanoparticles as a novel photothermal agent modified by chitosan (CS‐Cu2SeNPs) were successfully synthesized through a facile route at room temperature. The as‐synthesized CS‐Cu2SeNPs exhibited good water solubility and significant stability. CS‐Cu2SeNPs can efficiently convert near‐infrared (NIR) light into heat and exhibit excellent thermostability. In vitro experiments showed that CS‐Cu2SeNPs had selective cellular uptake between cancer and normal cells and expressed clear anticancer activity on A375 and HeLa human cancer cells. In addition, the anticancer activity was increased to about 400 % by combination with a laser at 808 nm, which acted through induction of apoptosis with the involvement of intrinsic and extrinsic pathways. CS‐Cu2SeNPs irradiated with a laser effectively triggered the intracellular reactive oxygen species (ROS) overproduction that promoted cell apoptosis. Therefore, the developed CS‐Cu2SeNPs could be used as a novel phototherapeutic agent for the photothermal therapy of human cancers.  相似文献   

3.
Polymer‐surface decoration has been found to be an effective strategy to enhance the biological activities of nanomedicine. Herein, three different types of polymers with a cancer‐targeting ligand Arg‐Gly‐Asp peptide (RGD) have been used to decorate mesoporous silica nanoparticles (MSNs) and the functionalized nanosystems were used as drug carriers of oxaliplatin (OXA). The results showed that polymer‐surface decoration of the MSNs nanosystem by poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) significantly enhanced the anticancer efficacy of OXA, which was much higher than that of chitosan (CTS). This effect was closely related to the enhancement of the cellular uptake and cellular drug retention. Moreover, PEI@MSNs‐OXA possessed excellent advantages in penetrating ability and inhibitory effects on SW480 spheroids that were used to simulate the in vivo tumor environments. Therefore, this study provides useful information for the rational design of a cancer‐targeted MSNs nanosystem with polymer‐surface decoration.  相似文献   

4.
Marquis BJ  Liu Z  Braun KL  Haynes CL 《The Analyst》2011,136(17):3478-3486
Since noble metal nanoparticles are increasingly found in consumer goods, there is a need for information about potential impacts of these nanoparticles on cellular function to avoid environmental and health risks associated with exposure. In this study, spherical Au and Ag nanoparticles of similar size were synthesized and modified to assess the effects of ζ-potential on immune cell function. Nanoparticle ζ-potential was controlled by employing surfactant exchange to generate nanoparticles with positive or negative surface charge. Mouse peritoneal mast cells (MPMCs) were then exposed to 5-15 μg ml(-1) of these nanomaterials, and uptake was assessed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Uptake for positively charged nanoparticles was more efficient than for negatively charged nanomaterials, and all nanoparticles were taken up in a concentration-dependent manner. Following uptake, MPMC degranulation function was assessed using carbon-fiber microelectrode amperometry (CFMA), showing decreased quantal secretion of serotonin by MPMCs exposed to the positively charged Au nanoparticles and negatively charged Ag nanoparticles. The overall efficiency of the degranulation process (indicated by amperometric spike frequency) decreased for all Au-exposed MPMCs. However, only the negatively charged version of the Ag nanomaterial resulted in decreased MPMC degranulation efficiency. Further studies revealed that ionic Ag was partially responsible for the observed effects. Overall, these studies reveal the complex nature of interactions between noble metal nanomaterials and cells that result in perturbed cellular function and illustrate the necessity of thorough nanoparticle characterization for interpretation of cellular function assays.  相似文献   

5.
Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.  相似文献   

6.
Novel nanocomposites of polylactide (PLA) nanofibers and tetraheptylammonium-capped Fe3O4 magnetic nanoparticles have been prepared and utilized to realize the efficient accumulation of anticancer drug daunorubicin in target cancer cells. The observations of optical microscopy and confocal fluorescence microscopy indicate that the PLA nanofibers and Fe3O4 nanoparticles may contribute to their beneficial effects on intracellular drug uptake of leukemia K562 cell lines in which the efficiently enhanced accumulation of anticancer drug daunorubicin on the membrane of cancer cells could be observed. Meanwhile, the electrochemical detection and the microculture tetrazolium studies were also explored to probe the effect of the relevant nanomaterials on the drug uptake of cancer cells. The results illustrate that the nanocomposites could effectively facilitate the interaction of daunorubicin with leukemia cells and remarkably enhance the permeation and drug uptake of anticancer agents in the cancer cells, which could readily lead to the induction of the cell death of leukemia cells. This observation suggests a new perspective for the targeted therapeutic approaches of cancers.  相似文献   

7.
We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3 ± 4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5 ± 6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7 ± 72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times , resulting from the different iron load of labeled cells using a 1.5 T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.  相似文献   

8.
Recent development in nanotechnology has provided new tools for cancer therapy and diagnostics. Because of their small size, nanoscale devices readily interact with biomolecules both on the cell surface and inside the cell. Nanomaterials, such as fullerenes and their derivatives, are effective in terms of interactions with the immune system and have great potential as anticancer drugs. Comparatively, other nanomaterials are able to load active drugs to cancer cells by selectively using the unique tumor environment, such as their enhanced permeability, retention effect and the specific acidic microenvironment. Multifunctional and multiplexed nanoparticles, as the next generation of nanoparticles, are now being extensively investigated and are promising tools to achieve personalized and tailored cancer treatments.  相似文献   

9.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

10.
Drug targeting using magnetic nanoparticles (MNPs) under the action of an external magnetic field constitutes an important mode of drug delivery. Low cargo capacity, particularly in hydrophobic drugs, is one limitation shown by MNPs. This article describes a simple strategy to enhance the drug-loading capacity of MNPs. The approach was to use polymer-drug conjugates to modify MNPs by layer-by-layer assembly (LbL). Curcumin (CUR) has shown remarkably high cytotoxicity toward various cancer cell lines. However, the drug shows low anticancer activity in vivo because of its reduced systemic bioavailability acquired from its poor aqueous solubility and instability. To address this issue, we synthesized cationic and anionic CUR conjugates by anchoring CUR onto poly(vinylpyrroidone) (PVP-Cur) and onto hyaluronic acid (HA-Cur). We used these oppositely charged conjugates to modify MNPs by layer-by-layer (LbL) assembly. Six double layers of curcumin conjugates were constructed on positively charged amino-terminated magnetic nanoparticles, TMSPEDA@MNPs. Finally, HA was coated onto the outer surface to form HA (HA-Cur/PVP-Cur)(6)@MNPs. Cellular viability studies showed the dose-dependent antiproliferative effect of HA (HA-Cur/PVP-Cur)(6)@MNPs in two cancer cell lines (glioma cells and Caco-2 cells). HA (HA-Cur/PVP-Cur)(6)@MNPs exhibited more cytotoxicity than did free curcumin, which was attributed to the enhanced solubility along with better absorption via hyaluronic acid receptor-mediated endocytosis. Flow cytometry showed enhanced intake of the modified MNPs by cells. Confocal microscope images also confirmed the uptake of HA (HA-Cur/PVP-Cur)(6)@MNPs with greater efficacy. Thus, the strategy that we adopted here appears to have substantial potential in carrying enhanced payloads of hydrophobic drugs to specified targets.  相似文献   

11.
BSA adsorption onto negatively and positively charged polystyrene nanoparticles was investigated. The nanoparticles were characterized in terms of particle size, zeta potential, surface group density, and morphology. The adsorption behavior of BSA on the particle surface, as a function of pH and overall charge of the particle, was studied using ITC. Different thermodynamic data such as enthalpy changes upon binding and stoichiometry of the systems were determined and discussed. The degree of surface coverage with BSA was calculated using the thermodynamic data. The cellular uptake of particles before and after BSA adsorption was studied using HeLa cells in the presence and absence of supplemented FCS in the cell culture medium.  相似文献   

12.
A simple method for fabrication of sialic acid surface-decorated selenium nanoparticles (SA-Se-NPs) with enhanced cancer-targeting and cell-penetrating abilities has been demonstrated in the present study. Monodisperse and homogeneous spherical SA-Se-NPs with striking stability were prepared under the optimized conditions. SA surface decoration significantly increased the cellular uptake and cytotoxicity of Se-NPs in HeLa human cervical carcinoma cells. Treatments of SA-Se-NPs induced dose-dependent apoptosis in HeLa cells, as evidenced by increase in sub-G1 cell populations, nuclear condensation and formation of apoptotic bodies. Further investigation on molecular mechanisms reveals that SA-Se-NPs triggered cancer cell apoptosis through activation of caspase-3 and subsequent cleavage of PARP.  相似文献   

13.
The influence of surface roughness and charge on the cellular uptake of nanoparticles in HeLa cells is investigated with fluorescent, oppositely charged, rough, and smooth nanoparticles. Flow cytometry, cLSM, and TEM reveal that rough nanoparticles are internalized by the cells more slowly and by an unidentified uptake route as no predominant endocytosis route is blocked by a variety of inhibitory drugs, while the uptake of smooth nanoparticles is strongly dependent on dynamin, F‐actin, and lipid‐raft. Negatively charged nanoparticles are taken up to a higher extent than positively charged ones, independent of the surface roughness.

  相似文献   


14.
Construction of bioresponsive drug‐delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer‐targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf‐NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor‐mediated endocytosis and triggered pH‐dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf‐NGO@HPIP effectively induced cancer‐cell apoptosis through activation of superoxide‐mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug‐delivery nanosystems and their use as efficient anticancer drug carriers.  相似文献   

15.
张杰  甘志华 《高分子科学》2013,31(9):1299-1309
This work focuses on the interaction between polymeric micelles with different charged surfaces and cancer cells in order to study the influence of surface charge on the in vitro cellular uptake efficiency. The amphiphilic diblock copolymers poly(ε-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) with different functional groups at the end of hydrophilic block were synthesized. The functional groups endue the micelles with different charges on the surfaces. The cellular uptake of micelles to T-24 cells (human bladder tumor cells), HepG2 cells (human liver hepatocellular carcinoma cell line) and Hela cells (human epithelial cervical cancer cells) was studied by means of flow cytometer and confocal laser scanning microscopy. The results indicate that the surface charges showed great influence on zeta potential of micelles at different pH values. The in vitro cellular uptake efficiency of micelles with different charged surfaces demonstrated different cellular uptake patterns to three kinds of cancer cells.  相似文献   

16.
胶体介孔Si O_2(CMS)是一种具有良好生物相容性、高稳定性和高负载量的药物载体。本文采用带正电荷的CMS作为药物载体负载抗癌药物5F用来抑制鼻咽癌细胞CNE2的生长。实验结果表明,CMS本身对于细胞是无毒的,可通过细胞的内吞作用进入并在细胞中分布。相对于单独的5F,CMS@5F诱导鼻咽癌细胞凋亡的效果明显增强,说明CMS能将5F有效携带至细胞中使其局部浓度增大,促进5F抑制癌细胞生长的效果。  相似文献   

17.
细胞吞噬表面电荷不同的硅纳米颗粒的研究   总被引:2,自引:0,他引:2  
本文以HepG细胞、L-02细胞和MCF-7细胞为代表, 利用异硫氰酸罗丹明荧光SiNPs的荧光信号同步指示作用, 研究了细胞对表面带正电荷的氨基化SiO2荧光纳米颗粒(PSiNPs)和表面带负电荷的SiO2荧光纳米颗粒(NSiNPs)的吞噬情况, 并考察了SiNPs浓度、培育时间及培养基中的血清对细胞吞噬表面电荷不同的SiNPs颗粒的影响.  相似文献   

18.
Self-assembled functional supramolecular metallopolymers have demonstrated application potential in cancer therapy. Herein, a copper polypyridyl complex was found able to self-assemble into a supramolecular metallopolymer driven by the intermolecular interactions, which could enhance the uptake in cancer cells through endocytosis, and thus effectively inhibiting tumor growth in vivo without damaging to the major organs. This study provides a facile way to achieve enhanced anticancer efficacy by using self-assembled metallopolymers.  相似文献   

19.
In recent years, capping molecules onto the surface of nanomaterials has become an interesting field of research. This idea facilitates the biological applications of nanomaterials with a modified surface. Keeping this in mind, the present study addresses the development of polymeric platinum nanoparticles using polyvinyl pyrrolidone (PVP). High-throughput characterization indicates that polymeric platinum nanoparticles have an excellent surface morphology and good dispersity in aqueous solution. More specifically, high resolution-transmission electron microscopy studies showed that the polymeric platinum nanoparticles were spherical and measured 2–10 nm. Furthermore, the polymeric platinum nanoparticles were evaluated for anticancer properties against human MCF-7 breast cancer cell lines. The results show that polymeric platinum nanoparticles inhibited the growth of cancer cells in a dose-dependent manner with a half-maximum inhibitory concentration of 96.36 μg ml−1. In addition, fluorescence-based staining methods confirmed an inquest in the pattern of cell death inferring late apoptotic bodies, nuclear fragmentation, mitochondrial membrane potential and generation of reactive oxygen species. The overall findings suggest that the polymeric platinum nanoparticles confer anticancer activity and may be suitable chemotherapeutic agents in the future. Finally, the results from this study can be extended to other types of cancer as well.  相似文献   

20.
Cationic nanocarrier mediated intracellular therapeutic agent delivery acts as a double-edged sword: the carriers promote cellular uptake, but interact nonspecifically and strongly with negatively charged endogenic proteins and cell membranes, which results in aggregates and high cytotoxicity. The present study was aimed at exploring zwitterionic polyaspartamide derivative nanoparticles for efficient intracellular delivery with low cytotoxicity. Poly(aspartic acid) partially grafted tetraethylenepentamine (PASP-pg-TEPA) with different isoelectric points (IEPs) was synthesized. The PASP-pg-TEPA formed zwitterionic nanoparticles with an irregular core and a well-defined shell structure in aqueous medium. Their particle size decreased from about 300 to 80 nm with an increase of the IEP from 7.5 to 9.1. The surface charge of the PASP-pg-TEPA nanoparticles could be tuned from positive to negative with a change of the pH of the medium. The nanoparticles with an IEP above 8.5 exhibited good stability under simulated physiological conditions. It was noted that the zwitterionic PASP-pg-TEPA nanoparticles displayed highly efficient cellular uptake in HeLa cells (approximately 99%) in serum-containing medium and did not adversely affect the cell viability at concentrations up to 1 mg/mL. Furthermore, thermodynamic analysis using isothermal titration calorimetry provided direct evidence that these zwitterionic nanoparticles had low binding affinities for serum protein. Therefore, the zwitterionic PASP-pg-TEPA nanoparticles could overcome limitations of cationic nanocarriers and achieve efficient intracellular delivery with low cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号