首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under acidic conditions, reduced graphene oxide (rGO) was functionalized with p‐aminobenzoic acid, which formed the diazonium ions through the diazotization with a wet‐chemical method. Surfactants or stabilizers were not applied during the diazotization. After the functionalized rGO was treated through mild sonication in aqueous solution, these functionalized rGO sheets were less than two layers, which was determined by atomic force microscopy (AFM) imaging. The water solubility of functionalized rGO after the introduction of polyethyleneimine (PEI) was improved significantly; it was followed by covalent binding of folic acid (FA) molecules to the functionalized rGO to allow us to specifically target CBRH7919 cancer cells by using FA as a receptor. The loading and release behaviors of elsinochrome A (EA) and doxorubicin (DOX) on the functionalized rGO sheets were investigated. The EA loading ratio onto rGO‐C6H4‐CO‐NH‐PEI‐NH‐CO‐FA (abbreviated rGO‐PEI‐FA, the weight ratio of drug loaded onto rGO‐PEI‐FA) was approximately 45.56 %, and that of DOX was approximately 28.62 %. It was interesting that the drug release from rGO‐PEI‐FA was pH‐ and salt‐dependent. The results of cytotoxicity (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and flow cytometry (FCM) assays, as well as cell morphology observations) clearly showed that the concentration of rGO‐PEI‐FA as the drug‐delivery composite should be less than 12.5 mg L ?1. The conjugation of DOX and rGO‐PEI‐FA can enhance the cancer‐cell apoptosis effectively and can also push the cancer cells to the vulnerable G2 phase of the cell cycle, which is most sensitive and susceptible to damage by drugs or radiation.  相似文献   

2.
The aim of this research is to prepare and characterize the inclusion complex between Dicinnamalacetone (DCA) and β-CD. The inclusion complex of Dicinnamalacetone [DCA] and Beta-cyclodextrin [β-CD] was characterized both in solution and solid state by UV-visible spectroscopy, Fluorescence spectroscopy, Nano second time resolved fluorescence study, Fourier Transform Infra-red spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Powder X-ray diffractometry (XRD), Atomic Force Microscopy (AFM) and molecular modeling test. The 1:2 soichiometry of inclusion complex and binding constant values were determined by Benesi-Hildebrand plot and confirmed by Job's continuous variation method. FT-IR study indicated that the aromatic rings of the Dicinnamalacetone molecule were included in the β-CD cavities. The nano second time resolved fluorescence study revealed that DCA exhibits single exponential decay in aqueous medium and bi-exponential decay in β-CD medium indicating the formation of inclusion complex. From the DSC study it is observed that the thermal stability of the inclusion complex was significantly enhanced when compared with the pure compound due to strong interaction between DCA and β-CD. Furthermore, implementation of molecular modeling test confirmed that the complexation could reduce the energy of the system. The experimental studies revealed that the most predominant structure of 1:2 inclusion complex is the one in which the two aromatic ends of DCA were inserted into the cavities of two β-CD molecules.  相似文献   

3.
The inclusions of methylene blue and phenothiazine by β-cyclodextrin (β-CD) in sodium dodecyl sulfate (SDS) micelles and SDS/n-C5H11OH mixed micelles are studied by fluorescence spectroscopy. β-CD molecules can include monomers of methylene blue only after they have included SDS at a ratio of 1:1. However, phenothiazine can be included in the β-CD cavities even with β-CD concentrations lower than the total SDS concentration in SDS micelles, but not for solutions with SDS/n-C5H11OH mixed micelles.  相似文献   

4.
The effects of cyclodextrins and derivatives on the activity and structure of pullulanase were investigated in this study. Our results showed that cyclodextrins and derivatives decreased the activity of pullulanase. This decrease was attributed to the interaction between the hydrophobic cavities of cyclodextrins and pullulanase. The hydrophobic cavity was confirmed to encapsulate the groups of pullulanase molecules by the addition of competitive guests. The results obtained from fluorescence spectroscopy analysis showed that β-CD showed more efficient interactions with pullulanase molecules and the side chain groups of cyclodextrin significantly prevented the interaction between the hydrophobic cavities of β-CD and pullulanase molecules. These findings suggest that the geometric dimension of hydrophobic cavities was crucial for matching between cyclodextrins and pullulanase and steric hindrance caused by side chains led to the decrease of the interaction.  相似文献   

5.
The present study describes the novel development and application of an ivermectin (IVM) sensing electrochemical platform based on reduced graphene oxide (rGO) and the macrocyclic host β-cyclodextrin (β-CD) molecule. The sensing method was based in the host-guest characteristics of β-CD and competitive interaction between the target analyte and the methylene blue (MB) redox probe. Differential pulse voltammetry (DPV) was employed for the detection of IVM and a linear response between 0.5 and 40.0 μmol L−1 with a limit of detection of 0.25 μmol L−1 was obtained using the glassy carbon (GC)/rGO/β-CD electrode. The sensing platform was successfully applied for the detection of IVM in tap water samples, which may expand the applications of β-CD towards the analysis of other chemical species.  相似文献   

6.
The crystal structures of the inclusion compounds of thymol, carvacrol and eugenol, (components of essential oils of vegetable origin) in β-cyclodextrin have been determined. Thymol/β-CD crystallizes in the space group P1 containing two host molecules in its asymmetric unit whereas both carvacrol/β-CD and eugenol/β-CD complexes crystallize in the space group C2. In all three complexes two host molecules form head-to-head dimers their guest/host stoichiometry being: 1/2 (carvacrol/β-CD), 2/2 (thymol/β-CD) and 3/2 (eugenol/β-CD). In the cases of the thymol/β-CD and the carvacrol/β-CD complexes the β-CD dimers are arranged according to the channel packing mode. The accommodation of the geometrical isomer guests is performed solely by their hydrophobic groups revealing the leading role of the hydrophobic driving forces in the complexation process whereas the position of their hydroxyl group affects the stoichiometry of the formed dimeric complexes. In the case of the eugenol/β-CD dimeric complex one guest molecule is found lying between the β-CD groups in a sandwich fashion whereas the other two symmetry related guests protrude outwards the narrower rim of the hosts with only their hydrophobic allyl-chain located inside the hosts’ cavities. This arrangement prohibits the formation of a channel and the observed crystal packing is that of a Tetrad mode.  相似文献   

7.
Cyclodextrin nanosponges (CDNS) are cross-linked polymers with remarkable inclusion/release properties. CDNS show swelling capability and a hydrophilicity/hydrophobicity balance that can be dramatically modified by the type and quantity of cross-linking agents. Here, we focus our attention on samples of β-cyclodextrin nanosponges (β-CDNS) obtained by reacting β-cyclodextrin (β-CD) with the cross-linking agent carbonyldiimidazole at different β-CD:cross-linking agent molar ratio. The vibrational properties of CDNS thus synthesized have been investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry and Raman spectroscopy in the dry state at room temperature. The quantitative analysis of the O–H stretching region (3,000–3,800 cm?1) allowed us to obtain structural information on the role played by primary and secondary OH groups in the hydrogen bond network of the polymer. Also, the contribution of interstitial and intracavity crystallization water molecules is reported. Solid-state NMR spectroscopy is used to study the molecular mobility of the polymer by measuring the 1H spin–lattice relaxation time in the rotating frame (T). The T values obtained for the polymer β-CDNS are compared with free β-CD. The observed relaxation parameters point out that the ester formation occurs mainly at the primary OH groups of CDs, also supporting the interpretation of vibrational spectra.  相似文献   

8.
An inclusion complex (IC) composed of a hydrofluoroether (HFE) guest and a β-cyclodextrin (β-CD) host was newly prepared, and the crystalline structure and the thermal stability of the IC were examined using several analytical methods, including wide-angle X-ray diffraction (WAXD), solid-state NMR, thermogravimetric analysis (TGA), TG–mass spectrometry (TG–MS), and quantum chemical calculation. The WAXD patterns and elemental analysis identified that the IC of an HFE/β-CD form of a channel-type structure, in which one HFE molecule is included in a common cavity of two β-CD molecules. TGA and TG–MS analysis indicated that the HFE molecules included in β-CD are hardly evaporated or degraded up to the decomposition temperature of the β-CD host. Solid-state 13C NMR indicated that the β-CD ring structure was deformed by including an HFE molecule in it, and that the 19F NMR signals of the HFE guest were significantly shifted to higher frequencies by the inclusion due to the dielectric media effect in the cavity of β-CD. Moreover, the 19F NMR signals of HFE included in IC were further shifted after annealing at 150 °C, which reflected structural changes in HFE/β-CD IC caused at elevated temperatures. The WAXD patterns also confirmed that the packing structure along the crystalline b-direction of HFE/β-CDs, which penetrates the cavities of β-CDs, was compressed by annealing and transformed to a more stable structure.  相似文献   

9.
The regeneration strategy for bone defects is greatly limited by the bone microenvironment, and excessive reactive oxygen species (ROS) seriously hinder the formation of new bone. Reduced graphene oxide (rGO) is expected to meet the requirements because of its ability to scavenge free radicals through electron transfer. Antioxidant hydrogels based on gelatine methacrylate (GM), acrylyl-β-cyclodextrin (Ac-CD), and rGO functionalized with β-cyclodextrin (β-CD) are developed for skull defect regeneration, but the mechanism of how rGO-based hydrogels enhance bone repair remains unclear. In this work, it is confirmed that the GM/Ac-CD/rGO hydrogel has good antioxidant capacity, and promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). The rGO-based hydrogel affects ZEB1/Notch1 to promote tube formation. Furthermore, two-photon laser scanning microscopy is used to observe the ROS in a skull defect. The rGO-based hydrogel promotes type H vessel formation in a skull defect. In conclusion, the hydrogel neutralizes ROS in the vicinity of a skull defect and stimulates ZEB1/Notch1 to promote the coupling of osteogenesis and angiogenesis, which may be a possible approach for bone regeneration.  相似文献   

10.
Graphene quantum dots (GQDs) were prepared by pyrolysis of citric acid, and then incorporated into β-cyclodextrin (β-CD) via H-bonds between the oxygen-containing groups on GQDs and the hydroxyl groups on β-CD. The nanocomposites of GQDs and β-CD (GQDs/β-CD) were negatively charged due to the ionization of carboxyl groups of GQDs, and therefore they could be effectively electrodeposited onto a glassy carbon electrode (GCE). The electrodeposited GQDs/β-CD were optically active due to the introduction of β-CDs with well-defined hydrophobic central cavities, and it was employed as an electrochemical chiral interface for enantiorecognition of tryptophan (Trp) isomers.  相似文献   

11.
β-Cyclodextrin (β-CD) based materials have been widely used as drug carriers for pharmaceutical applications. To understand the diffusion of β-CDs in mucus is important for selecting β-CD based drug carriers for applications targeting mucosal absorption because the surfaces of many biological membranes are covered with a highly viscous aqueous mucus layer which forms relatively effective diffusion barriers for drugs. In this study, 19F self-diffusion NMR technique has been applied to study the self-diffusions of β-CDs in mucus. The 19F NMR signals arose from 1-fluoroadamantane molecules entrapped in the cavities of β-CDs. The diffusive abilities of different β-CDs in mucus were assessed through analyzing the diffusion coefficients using the presented kinetic model, and Ogston’s and Renkin’s diffusion models for hydrogel systems. The kinetic results show that 2-hydroxypropyl-β-CD and 2-Carboxyethyl-β-CD have the smallest binding affinities to bovine submaxillary mucin and human nasal mucin among five tested β-CDs. The mesh sizes of the bovine submaxillary mucus at different concentrations and that of the human nasal mucus were evaluated using the diffusion models. We hope that this 19F diffusion method will be useful to study the diffusion of β-CD based materials in other biological systems.  相似文献   

12.
环糊精与新型表面活性剂的主客体相互作用   总被引:1,自引:1,他引:1  
在298.15 K下用微量热法结合核磁共振法研究了α-环糊精, β-环糊精与十二烷基多氧乙烯磺酸钠C12EnS(n=1, 3)在水溶液中的包结作用. 实验结果表明, β-环糊精与客体的包合是焓、熵共驱的过程, α-环糊精与客体的包合则是焓驱动过程. β-环糊精与两种客体包合的化学计量比随客体中氧乙烯链的不同而不同, 而α-环糊精与两种客体包合的化学计量比则无差别. 1H NMR数据表明, C12EnS的存在使两种环糊精上各质子的化学位移向高场移动, 从微观上证明了包结作用的发生.  相似文献   

13.
This research conducts method development to study the diffusions of β-cyclodextrin and its derivatives (collectively called β-CDs) in biological systems. We proposed using fluoroadamantane (FA) β-CD inclusion complexes as a model system to study the diffusion of β-CDs by using 19F self-diffusion NMR technique. The use of 19F signal over 1H signal arises from the advantage of being able to avoid the interference of 1H signals from biological molecules and water. Another benefit of using FA is that the 19F relaxation times are not significantly influenced by viscous biological solutions due to the tumbling nature of FA in β-CD cavities. To synthesize the FA β-CD inclusion complexes, a FA THF (tetrahydrofuran) solution and a β-CD water solution were mixed together followed by lyophilization. The formation of the inclusion complexes in water were determined using HMQC and ROESY NMR experiments with the assistance of molecular modeling. To assess the method, both 1H and 19F diffusion NMR were carried out to study the diffusions of four typical FA β-CD inclusion complexes. The results of this study illustrate that the diffusion coefficients obtained from the FA 19F signal truly measure those of the β-CDs’ diffusion coefficients in water. Thus, the proposed technique using our model system is valid to be used to study the diffusions of β-CDs in biological systems.  相似文献   

14.
The inclusion complexes of isoquercitrin (IQ) with cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and dimethyl-β-cyclodextrin (DM-β-CD) have been investigated using the methods of steady-state fluorescence, UV-vis absorption and induced circular dichroism. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was measured in the case of DM-β-CD due to the increased hydrophobicity of the host cavity, followed by HP-β-CD and β-CD. The effect of pH on the complexation process was also quantitatively assessed. IQ exists in different molecular forms depending on pH and β-CDs were most suitable for inclusion of the neutral form of IQ. The phase-solubility diagrams obtained with β-CD, HP-β-CD and DM-β-CD were all classical AL type. And DM-β-CD provided the best solubility enhancement, 12.3-fold increase compared to 2.8- and 7.5-fold increase for β-CD and HP-β-CD. The apparent stability constants obtained from the solubility data at 25 °C were comparable with those obtained from the fluorescence assays. Moreover, 1H NMR was carried out, which revealed that the IQ favorably inserted into the inner cavity from the chromone part instead of the phenyl part, which was in agreement with molecular modeling studies.  相似文献   

15.
Complexation of various kinds of bisphenols (BPs) with cycloheptaamylose(β-cyclodextrin, β-CD) derivatives (β-CD, hydroxyethyl-β-CD (HE-β-CD), 2,6-di-O-methyl-β-CD (DM-β-CD) and polymerised β-CD (L-Poly-β-CD)) was examined fluorimetrically using2-anilinonaphthalene-6-sulfonic acid (2,6-ANS) as a probe. From the inhibitory effectof BPs on the inclusion of 2,6-ANS by the β-CD derivatives, the associationconstants (Kass) of BPs with the β-CD derivatives were determined.The Kass values for bisphenol B (BPB) with β-cyclodextrin derivatives except for L-Poly-β-CD were always larger than those for other BPs including bisphenol A (BPA), due to the interaction between the non-polar cavity and hydrophobic BPB. Thermodynamic parameters indicated that the entropy change was always largely negative (-90~ -120 J/mol...K in the β-CD system, for example), and the inclusion of bisphenols into the CD cavity was completely enthalpy-driven. The very largely negative entropy change might be mainly due to the tight fixation of guest molecules in the CD cavity, resulting in the loss of freedom of both CD and guest molecules. The effect of the structure of guest and host molecules on the association was also examined.  相似文献   

16.
Thyme essential oil (TO) is a good antimicrobial agent, however, its high volatility and reactivity limits its application as food preservative. β-cyclodextrin (β-CD) is able to encapsulate organic molecules, forming host–guest complexes with hydrophobic and volatile molecules such as TO constituents, controlling volatility and reactivity. In addition, controlled released of the β-CD trapped compounds could be possible by exposing the capsules to high relative humidity (RH). With this in mind, the controlled release of antifungal volatiles throughout exposure of TO:β-CD capsules to high relative humidity was studied. Thymol (TOL) was the major constituent of TO, detected by gas chromatography before and after encapsulation. Capsules of the 8:92 ratio (TO:β-CD) showed the highest TOL content. Hydrogen bonds and hydrophobic interactions were detected between the oil constituent and β-CD by IR and 1H NMR spectroscopy. During moisture sorption, the TO capsules showed a lower water uptake compared with free β-CD. Similar behavior was observed during water desorption. In all cases, a hysteresis process was observed when comparing sorption and desorption isotherms. At high RH, TOL is displaced and almost 76% is released to the headspace. The growth of Alternaria alternata was inhibited significantly by the addition and exposure to TO:β-CD as measured by both the agar dilution and the headspace method, respectively. Therefore, the encapsulation of antifungal volatile compounds as TO in β-CD, could be an alternative to control the release of natural antimicrobials that can be of interest to the agricultural area.  相似文献   

17.
The base form of the local anaesthetic kazcaine (BFK, [1-(2-ethoxyethyl)-4-ethynyl-4-benzoyloxypiperidine, C18H23NO3]) and β-cyclodextrin (β-CD) co-crystallized as BFK:β-CD inclusion complex in 1:2 M ratio from a mixture of water and ethanol while the filtered mother liquor yielded crystals of free BFK. X-ray diffraction showed that the crystals of BFK and its inclusion complex with β-CD belong to monoclinic (P21/c) and triclinic (P1) space groups, respectively. The crystals of free BFK are stabilized by pairs of C–H?O, C–H?π and ≡C–H?O type interactions and van der Waals contacts. In the 1:2 BFK:β-CD complex the two β-CD molecules are in hydrogen-bonding contact with their primary hydroxyl groups, the 1-(2-ethoxyethyl)-4-ethynyl-piperidine moiety being located in one and the benzoyloxy group of BFK in the other β-CD. This crystal structure is of the channel-type, the β-CD molecules of the 1:2 BFK:β-CD complex interacting with their secondary hydroxyl groups. The pharmacological activities of the 1:2 BFK/β-CD inclusion complex have been determined in mice, rats, porpoises and rabbits and compare favourably with those of kazcaine, procaine, dicaine, lidocaine and trimecaine. The methods used include terminal (superficial), infiltration, conduction anaesthesia, and acute toxicity.  相似文献   

18.
Herein is presented a strategy for the enantioseparation of amino acids enantiomers using β-CD functionalized Fe(3)O(4) nanospheres, in which β-CD provides the ability to chirally discriminate amino acids enantiomers, while the Fe(3)O(4) nanoparticles serve as magnetic separators.  相似文献   

19.
An inclusion complex between the agrochemical chloropropham (CIPC) and β-cyclodextrin (β-CD) was prepared. A 2:1 host-guest stoichiometry was conformed by elemental analysis. From the phase solubility studies, the calculated stepwise stability constants were K(1)=224.6L/mol and K(2)=939.2L/mol, respectively. FT-IR, thermoanalysis and (1)H NMR spectra were applied to characterize the complex. It was speculated that the inclusion mode was two β-CD cavities included the chlorophenyl and the isopropyl moiety of one CIPC molecule, which was in agreement with the most predominant configuration optimized by molecular modeling. By complexation with β-CD, the water solubility and the thermal stability of CIPC were prominently improved.  相似文献   

20.
The interactions of ethyl violet (EV) with cyclodextrins (CDs) were investigated by Multi-wall carbon nanotubes/Nafion composite film modified glassy carbon electrode (MWNTs/Nafion/GCE). It was found that the MWNTs/Nafion composite film can effectively catalyze the electrode reaction of EV. The variation of the electrochemical behavior of EV upon the addition of CDs indicated the formation of the inclusion complexes of EV with β-CD, heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), heptakis (2,6-di-O-methyl)-β-CD (DM-β-CD), hydroxypropyl-β-CD (HP-β-CD), and carboxymethyl-β-CD (CM-β-CD). The stoichiometry ratios of EV and the above five CDs were found to be 1:1. The inclusion ability obeyed the order: CM-β-CD > HP-β-CD > TM-β-CD > DM-β-CD > β-CD. The results showed that the modified β-CDs exhibited stronger binding ability than native β-CD, especially the charged CM-β-CD, which implied that the inclusion capacity depends on not only size matching and hydrophobicity but also electrostatic interaction. 1HNMR spectra and molecule mechanics calculations suggested that EV was included into the cavity of β-CD from the wider side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号