首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the redox behavior of the osmium and ruthenium compounds (OEP)M(NO)(OEt) and (OEP)M(NO)(SEt) (OEP = octaethylporphyrinato dianion; M = Os, Ru) by cyclic voltammetry and infrared spectroelectrochemistry. The compound (OEP)Os(NO)(OEt) undergoes a single reversible oxidation process in dichloromethane. In contrast, the thiolate compound (OEP)Os(NO)(SEt) undergoes a net irreversible oxidation resulting in formal loss of the SEt ligand. Extended Hückel calculations on crystal structures of these two compounds provide insight into the nature of their HOMOs. In the case of the alkoxide compound, the HOMO is largely metal centered, with 70% of the charge located in the metal's orbital and approximately 25% on the porphyrin ring. However, the HOMO of the thiolate compound consists of a pi bonding interaction between the metal dxz orbital and the px orbital on the sulfur, and a pi antibonding interaction between the metal d orbital and a pi* orbital on NO. The redox behavior of the Ru analogues have been determined, and are compared with those of the Os compounds.  相似文献   

2.
Manganese(II) porphyrins are isoelectronic with iron(III) porphyrins, and previously reported work suggests that manganese nitrosyl porphyrins are good structural models for their kinetically unstable and biologically relevant ferric-NO analogues. We have prepared a new set of six-coordinate manganese nitrosyl porphyrins of the general form (por)Mn(NO)(L)(por = TTP, T(p-OCH3)PP; L = piperidine, methanol, 1-methylimidazole) in moderate to high yields. The (por)Mn(NO)(pip) complexes were prepared from the reductive nitrosylation of the (por)MnCl compounds with NO in the presence of piperidine. The IR spectra of the (por)Mn(NO)(pip) compounds as KBr pellets show new strong bands at 1746 cm(-1)(for TTP) and 1748 cm(-1)(for (T(p-OCH3)PP) due to the NO ligands. Attempted crystallization of one of these compounds (por = TTP) from dichloromethane-methanol resulted in the generation of the methanol complex (TTP)Mn(NO)(CH3OH). Reaction of the (por)Mn(NO)(pip) compounds with excess 1-methylimidazole gave the (por)Mn(NO)(1-MeIm) derivatives in good yields. The IR spectra of these compounds show nu(NO) bands that are approximately 12 cm(-1) lower than those of the (por)Mn(NO)(pip) precursors, indicative of greater Mn-->NO pi-backdonation in the 1-MeIm derivatives. X-Ray crystal structures of three of these compounds, namely (TTP)Mn(NO)(CH3OH), (TTP)Mn(NO)(1-MeIm) and (T(p-OCH3)PP)Mn(NO)(1-MeIm) were obtained, and reveal that the NO ligands in these complexes are linear.  相似文献   

3.
The DFT calculations for nitrosyl manganese and cobalt porphyrins were carried out with the use of several density functionals. The binding energy of nitrosyl ligand and spin state of nitrosyl-free manganese porphyrin were determined. The best values of binding energy are obtained from the OLYP functional. The NBO analysis of metal?Cnitrosyl bonding was performed. Electronic spectra of nitrosyl cobalt and manganese porphyrin were calculated with the TDDFT method. The calculated electronic transitions agree well with the experimental data except for the Soret band of (Por)Mn(NO), where they are 0.3?C0.5?eV higher in energy than the experimental ones.  相似文献   

4.
We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a benchmark for evaluation of quantum chemical vibrational calculations. Detailed normal mode predictions result from DFT calculations on ferrous nitrosyl tetraphenylporphyrin Fe(TPP)(NO), its cation [Fe(TPP)(NO)]+, and ferrous nitrosyl porphine Fe(P)(NO). Differing functionals lead to significant variability in the predicted Fe-NO bond length and frequency for Fe(TPP)(NO). Otherwise, quantitative comparison of calculated and measured Fe dynamics on an absolute scale reveals good overall agreement, suggesting that DFT calculations provide a reliable guide to the character of observed Fe vibrational modes. These include a series of modes involving Fe motion in the plane of the porphyrin, which are rarely identified using infrared and Raman spectroscopies. The NO binding geometry breaks the four-fold symmetry of the Fe environment, and the resulting frequency splittings of the in-plane modes predicted for Fe(TPP)(NO) agree with observations. In contrast to expectations of a simple three-body model, mode energy remains localized on the FeNO fragment for only two modes, an N-O stretch and a mode with mixed Fe-NO stretch and FeNO bend character. Bending of the FeNO unit also contributes to several of the in-plane modes, but no primary FeNO bending mode is identified for Fe(TPP)(NO). Vibrations associated with hindered rotation of the NO and heme doming are predicted at low frequencies, where Fe motion perpendicular to the heme is identified experimentally at 73 and 128 cm-1. Identification of the latter two modes is a crucial first step toward quantifying the reactive energetics of Fe porphyrins and heme proteins.  相似文献   

5.
A critical component of the biological activity of NO and nitrite involves their coordination to the iron center in heme proteins. Irradiation (330 < lambda < 500 nm) of the nitrosyl-nitro compound (TPP)Fe(NO)(NO(2)) (TPP = tetraphenylporphyrinato dianion) at 11 K results in changes in the IR spectrum associated with both nitro-to-nitrito and nitrosyl-to-isonitrosyl linkage isomerism. Only the nitro-to-nitrito linkage isomer is obtained at 200 K, indicating that the isonitrosyl linkage isomer is less stable than the nitrito linkage isomer. DFT calculations reveal two ground-state conformations of (porphine)Fe(NO)(NO(2)) that differ in the relative axial ligand orientations (i.e., GS parallel and GS perpendicular). In both conformations, the FeNO group is bent (156.4 degrees for GS parallel, 159.8 degrees for GS perpendicular) for this formally {FeNO}(6) compound. Three conformations of the nitrosyl-nitrito isomer (porphine)Fe(NO)(ONO) (MSa parallel, MSa perpendicular, and MSa(L)) and two conformations of the isonitrosyl-nitro isomer (porphine)Fe(ON)(NO(2)) (MSb parallel and MSb perpendicular) are identified, as are three conformations of the double-linkage isomer (porphine)Fe(ON)(ONO) (MSc parallel, MSc perpendicular, MSc(L)). Only 2 of the 10 optimized geometries contain near-linear FeNO (MSa(L)) and FeON (MSc(L)) bonds. The energies of the ground-state and isomeric structures increase in the order GS < MSa < MSb < MSc. Vibrational frequencies for all of the linkage isomers have been calculated, and the theoretical gas-phase absorption spectrum of (porphine)Fe(NO)(NO(2)) has been analyzed to obtain information on the electronic transitions responsible for the linkage isomerization. Comparison of the experimental and theoretical IR spectra does not provide evidence for the existence of a double linkage isomer of (TPP)Fe(NO)(NO(2)).  相似文献   

6.
Conducting poly(pyrrole-N-methylpyrrole) (P(Py-NMPy)) was electrochemically synthesized on a gold electrode in a lithium perchlorate-containing acetonitrile electrolyte solution and compared with polypyrrole (PPy) and poly(N-methylpyrrole) (PNMPy) prepared under the same conditions. The obtained polymers were characterized with cyclic voltammetry, in situ resistance measurements, in situ UV–vis spectroscopy, FTIR spectroscopy, and scanning electron microscopy. The onset potentials for pyrrole and N-methylpyrrole monomer oxidation differ by about 0.1 V. Nucleation processes initiated by the radical cations are followed by growth of nuclei into continuous films. The oxidation and reduction peaks for the P(Py-NMPy) copolymer synthesized at 1:1 M concentration ratio of the comonomers are between those of PPy and PNMPy. A decreased [Py]/[NMPy] comonomer concentration ratio yields in the copolymers shifts of peak potentials to more positive values. The in situ resistance of copolymers measured from ?0.20 to 0.90 V vs. Ag/AgCl decreased with increasing [Py]/[NMPy] concentration ratio. In situ UV–vis and ex situ FTIR spectra of copolymers show spectroscopic behavior intermediate between those of the homopolymers. Scanning electron microscopy micrographs of the samples show fundamental differences between the morphology of the homo- and copolymers.  相似文献   

7.
The cis-doubly N-confused porphyrin, H2N2CP, containing two adjacent confused pyrrole rings has been investigated from the point of view of its acid-base and electrochemical behavior in dichloromethane. This novel porphyrin isomer can form two metal-carbon bonds in the central core, stabilizing metal ions in unusually high oxidation states. Furthermore, the two outside N-pyrrole atoms remain available for acid-base and specific solvent interactions. Protonation of the pyrrole N atoms proceeds according to two successive steps, while only a single deprotonation step has been observed in the presence of bases. Similarly, in the case of the silver and copper complexes the protonation and deprotonation of the outer pyrrole rings have been detected, confirming the structure of the metalated species as M(III)-HN2CP. The electrochemical reduction of the metal ions (III/II redox process) and oxidation of the macrocycle ring have been detected respectively at -0.9 and 1.4 V based on spectroelectrochemical measurements in conjunction with the acid/base equilibrium studies. Additional waves observed around -0.5 and 1.3 V have been assigned to redox processes involving water molecules associated with the doubly N-confused porphyrins.  相似文献   

8.
Summary The reaction between ascorbic acid and ammonium hexa nitrato cerate was studied potentiometrically in the mixed solvent glacial acetic acid acetonitrile medium. It was found that one mole of ascorbic acid consumes four equivalents of cerate in non-aqueous medium. This reaction can be made use of to estimate potentiometrically ascorbic acid with ammonium nitrato cerate in non-aqueous media, using either glass or antimony as reference electrode and platinum as indicator electrode.
Zusammenfassung Die Reaktion zwischen Ascorbinsäure und Ammoniumhexanitratocerat wird in einem Medium von Eisessig + Acetonitril untersucht. Im nichtwäßrigen Medium verbraucht 1 Mol Ascorbinsäure 4 Äquivalente Cerat. Die Reaktion kann zur potentiometrischen Bestimmung von Ascorbinsäure benutzt werden; dabei wird als Indicatorelektrode Platin und als Vergleichselektrode die Glas- oder Antimonelektrode verwendet.
  相似文献   

9.
10.
11.
12.
A Peltier-cooled silicon drift detector was successfully applied for conversion electron spectrometry. The energy resolution of the detector for 45 keV electrons was 0.50 keV (FWHM). The approximate thickness of the dead layer was determined to be 140 ± 20 nm Si equivalent. The relative efficiency of the detector was verified to be approximately constant in the energy range of 17–75 keV. This is concordant with the high transparency of the thin dead layer and the sufficient thickness of the detector (450 μm) to stop the electrons. The detector is suitable for use in plutonium analysis of chemically prepared samples. Moreover, it was demonstrated that conversion electron spectrometry is better than alpha spectrometry in preserving its capability to determine the 240Pu/239Pu isotopic ratio as a function of sample thickness. The investigated measurement technique can be considered a promising new tool in safeguards, complementary to existing methods.  相似文献   

13.
Summary Complexation equilibria of the Tl(I) ion with 18-crown-6 and dibenzo-18-crown-6 were studied polarographically in 10 nonaqueous solvents. The stability of the complexes is strongly influenced by the nature of solvents and varies with their Lewis basicities. It has been found that the logK s value (K s is the stability constant of the complex) can be well described by empirical relation logK s=a DN+b, whereDN stands for the Gutmann donor number anda andb mark the regression coefficient. Addition of the second explanatory parameter, the acceptor number, is not statistically significant. This result is in agreement with the predominant role of Tl(I) ion solvation.
Elektrochemische Untersuchungen von Tl(I)-Kronenetherkomplexen in nichtwäßrigen Medien
Zusammenfassung Es wurden die Komplexierungsgleichgewichte des Tl(I)-Ions mit 18-Krone-6 und Dibenzo-18-krone-6 polarographisch in 10 nichtwäßrigen Lösungsmitteln untersucht. Die Stabilität der Komplexe wird sehr stark vom Solvens beeinflußt, wobei eine starke Abhängigkeit von der Lewis-Basizität beobachtet wird. Es wurde festgestellt, daß die logK s-Werte (K s ist die Komplexstabilitätskonstante) gut mit der empirischen Beziehung logK s=a DN+b beschrieben werden können, wobeiDN die Gutmann'sche Donorzahl unda undb die Regressionskonstanten bedeuten. Hinzunahme der Akzeptorzahl als zweiten Parameter bleibt statistisch insignifikant. Dieses Ergebnis stimmt mit dem dominierenden Einfluß der Tl(I)-Ionensolvatation überein.
  相似文献   

14.
15.
Density Functional theoretical calculations confirm the experimental observation that the low-temperature photolysis of (TPP)Fe(NO)(NO2) (as a KBr pellet) results in the generation of linkage isomers involving the axial NO and NO2 groups and suggest the possible formation of the double linkage isomer (TPP)Fe(ON)(ONO). The energy difference between the ground state (porphine)Fe(NO)(NO2) and the double-linkage isomer (porphine)Fe(ON)(ONO) is 1.57 eV, which is comparable to the 1.59 eV calculated previously for the nitrosyl-to-isonitrosyl linkage isomerism in the five-coordinate (porphine)Fe(NO) analogue.  相似文献   

16.
Electrochemical and spectroelectrochemical properties of manganese(III) reconstituted myoglobin (Mn(III)–Mb) have been investigated. No redox wave of Mn(III)–Mb was observed at a highly hydrophilic indium oxide electrode on which rapid direct electron transfer of native myoglobin took place, suggesting the electron transfer reaction of Mn(III)–Mb at an indium oxide electrode is very slow. The rate constant of the chemical reduction of Mn(III)–Mb with dithionite was ca. 20 times smaller than that of native Mb. Using an optically transparent thin layer electrode (OTTLE) cell and Oxazine-170 perchlorate, 5,9-bis(diethylamino)-10-methyl-benzo[a]phenoxazonium perchlorate, as an electron transfer mediator, the redox potential for the Mn(III) Mn(II)–Mb couple was estimated to be −0.32 V versus Ag AgCl (sat. KCl) at 25°C.  相似文献   

17.
The advantages of lithographic-galvanic (LIGA) fabricated microstructured honeycomb electrodes are demonstrated for spectroelectrochemical cells with respect to the response time (the time necessary to generate the product in a sufficient layer thickness close to the electrode to be detectable by UV-Vis-NIR spectroscopy) and to the conversion of the redox system in solution under thin-layer conditions. Transmission UV-Vis-NIR spectroscopy for several electrochemical applications can be performed in a special spectroelectrochemical cell based on the LIGA electrode and the two quartz rods, forming the walls of the cell and conducting the light beam through the cell. They are limiting the diffusion layer at the structured part of the working LIGA electrode. These microstructured LIGA-electrodes can be used as well defined models of porous electrodes at which redox processes occur under finite diffusion conditions. Such electrodes have been successfully used in the voltammetric and spectroelectrochemical study of various redox systems in both aqueous and non-aqueous solvents. The possibility to fabricate the well defined microstructures from various organic conducting polymers is demonstrated by the electrochemical deposition of polypyrrole in moulded LIGA-forms at high current densities in aqueous solutions.  相似文献   

18.
The data on the solvation of macrocyclic polyethers in individual and binary non-aqueous solvents are summarized and analyzed.  相似文献   

19.
20.
A very simple isopiestic method based on that of S. Christian is used for measuring the salting-in of water into nonpolar, low-volatility solvents by tetraalkylammonium salts. The quantity of excess water which is dissolved in such solvents is directly proportional to the salt concentration and is sharply dependent on the nature of the anion but is nearly insensitive to that of the R4N+ cation. The hydration ratioH, which we define as the moles of excess solubilized water per mole of R4N+ X, is directly relatable to the enthalpy of hydration of the anion X in several solvents and in the gas phase. The quantityH is also correlated with many free-energy terms including those for the Hofmeister lyotropic series, for the ability of the anions to salt nonelectrolytes out of water, for the free-energy terms for separation of these ions by reverse osmosis membranes, and for their nucleophilicities. A surprising (but not unprecedented) feature of the hydration ratio is that it, rather than its logarithm, behaves as a free-energy term. It is proposed that all these properties have in common the free energy of hydration of the anions, and this notion is supported by a close correspondence between the anionic hydration ratio and their hydrogen-bonding energies with proton donors in aprotic solvents. The results support scattered observations by other workers that isolated water molecules do not have an unusual inherent affinity for anions. Accordingly, large anionic hydration energies in bulk aqueous media reflect extensive cooperative interactions in the solvent. Implications for nucleophilic activity in phase transfer catalysis and enzyme activity are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号