首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent electrochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investigated. The electrochemical stability of selected ILs comprising five traditional cations, namely imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cation and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.  相似文献   

2.
The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated.  相似文献   

3.
三种碳基电极材料的电化学性质对比研究(英文)   总被引:1,自引:0,他引:1  
对硼掺杂纳米金刚石(BDND),硼掺杂微米金刚石(BDMD)和玻碳(GC)电极的电化学性质做了对比研究.利用扫描电子显微镜表征了BDMD和BDND电极,其表面粒子大小分别为1-5μm和20-100nm.利用Raman光谱对两种金刚石薄膜的成分进行了表征,结果表明利用热丝化学气相沉积法得到了高质量的BDND和BDMD薄膜.采用0.5mol·L-1H2SO4溶液测定了三种电极的电化学窗口,BDND和BDMD电极的电化学窗口分别为3.3和3.0V,远比GC电极(2.5V)的要宽.[Fe(CN)6]3-/[Fe(CN)6]4-溶液的循环伏安和交流阻抗测定表明,在BDND、BDMD和GC电极上的峰间距(△Ep)分别为73、92和112mV,且其电子传递电阻(Ret)分别为(98±5)、(260±19)和(400±25)Ω.我们也研究了0.1mmol·L-1双酚A在三种电极上的电化学氧化行为.上述的电化学测定结果表明,两种金刚石电极均比GC电极表现出了更宽的电化学窗口、更好的电化学可逆性质、更快的电子传递速度和更高的电化学稳定性,更为重要的是与BDMD相比BDND的电化学性质有进一步的提高.  相似文献   

4.
We studied the electrocatalytic activity of cobalt tetra-aminophthalocyanine (CoTAPc) for the reduction of molecular oxygen (O2) on adsorbed monomeric and on electropolymerized films of different thicknesses on glassy carbon (GC) electrode. The polymeric films, denoted poly-CoTAPc, were first characterized by electrochemical impedance spectroscopy and it appears that the types of phenomena revealed to be occurring depend less on the film thickness in basic than in acid media. For O2 reduction, the results showed that poly-CoTAPc is more active than the monomeric CoTAPc adsorbed on GC. Indeed, rotating ring-disk electrode data showed that polymeric CoTAPc promotes the four-electron reduction of O2 to water in parallel to a two-electron reduction to give peroxide. On monomeric and thin films of poly-CoTAPc, a two-electron reduction mechanism predominates. In basic media the activity increases very slightly with thickness, whereas in acid media this increase is more pronounced. This parallels the observed behavior revealed by electrochemical impedance spectroscopy.  相似文献   

5.
Ionic liquids (ILs), as separation media, have made significant contributions in the past decades in advancing research in gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). This review, covering reports published from the mid 1980s to early 2007, shows how ILs have been used so far in separation science, originally primarily as GC stationary phases and later as mobile phase additives (both millimolar and major percent levels) for LC and CE. Representative GC and LC chromatograms as well as CE electropherograms are shown. In addition, the very recent findings on the development of ionic liquids with surfactant properties and its applications for chiral and achiral analysis are discussed.  相似文献   

6.
The development of new electrocatalysts with the aim of enhancing the rate of electrochemical reactions has been a long-term goal of electrochemists. In part, this is due to the great importance of electrocatalysts in energy generation and environmental concerns. In this review, various methods of the preparation of nanostructured electrocatalysts and their applications after attachment to the electrode surface are described. Diazonium chemistry has been extensively used for the preparation and attachment of nanostructured electrocatalysts and this review thus describes the recent developments and applications of this chemistry in electrocatalysis. The preparation of nanostructured electrocatalysts including grafted molecular films and metal nanoparticles physically adsorbed on electrode surfaces and those attached to the surface by molecular links using diazonium chemistry is reviewed. Two methods for the attachment of nanoparticles by simple physical adsorption and by electrochemical deposition on molecular films are described and the electrochemical response of nanostructured electrocatalysts for some of the most common electrochemical reactions is discussed.  相似文献   

7.
Ionic liquids (ILs) have a wide variety of applications in energy storage and material production. ILs are composed of only cations and anions, without any molecular solvents, and are generally known as “designer liquids (solvents)” because their physicochemical properties can be tuned by the combination of ionic species. In recent several decades, research and development activities of rechargeable batteries have garnered considerable attention because certain groups of ILs exhibit high electrochemical stability and moderate ionic conductivity, rendering them suitable for application in high-voltage batteries. ILs with amide anions are representative electrolytes and are extensively researched by many research groups, including our group. This paper focuses on amide-based ILs as electrolytes for alkali-metal-ion rechargeable batteries, introducing their history, characteristics, and existing challenges to be addressed.  相似文献   

8.
The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, C4MIMPF6, C4MIMBF4 and CsMIMPF6, are investigated using classic electrochemical methods, respectively. Only the product, hydroxypivalic acid is detected by high performance liquid chromatography (HPLC). It can be conferred that the electrochemical oxidation of hydroxypivalaldehyde consists of two successive one-electron irreversible reactions at glass carbon (GC) electrode and the possible reaction mechanism in the ILs is proposed firstly. The diffusion coefficients of hydroxypivalaldehyde are obtained according to the electrochemical characteristics of hydroxypivalaldehyde in C4MIMPF6, C4MIMBF4 and CsMIMPF6.  相似文献   

9.
本文将经水蒸气二次活化的椰壳活性炭(W-AC)作为电极材料,选择1-乙基-3甲基咪唑四氟硼酸盐([EMIM]BF4)作为电解质,结果表明W-AC电极的比电容量远高于未活化的椰壳活性炭(R-AC).使用循环伏安、恒电流充放电、交流阻抗等方法研究了不同种类离子液体电解质对超级电容器电化学性能的影响.不同阴阳离子组成的离子液体作为电解质,直接影响超级电容器的电化学性能. 研究表明,由EMIM+和BMIM+阳离子与BF4-、TFSI-阴离子构成的离子液体电解质较适用于W-AC电极. 其中在[EMIM]BF4电解质中,单片电极的比电容量可高达153 F·g-1;在1-丁基-3-甲基-咪唑四氟硼酸盐([BMIM]BF4)电解质中电位窗可达3.5V,能量密度可高达57 Wh·kg-1.本研究对于构筑高性能超级电容器离子液体的选择提供参考,以满足不同应用领域需求.  相似文献   

10.
Applications of ionic liquids in electrochemical sensors   总被引:2,自引:0,他引:2  
Ionic liquids (ILs) are molten salts with the melting point close to or below room temperature. They are composed of two asymmetrical ions of opposite charges that only loosely fit together (usually bulky organic cations and smaller anions). The good solvating properties, high conductivity, non-volatility, low toxicity, large electrochemical window (i.e. the electrochemical potential range over which the electrolyte is neither reduced nor oxidized on electrodes) and good electrochemical stability, make ILs suitable for many applications. Recently, novel ion selective sensors, gas sensors and biosensors based on ILs have been developed. IL gels were found to have good biocompatibility with enzymes, proteins and even living cells. Besides a brief discussion of the properties of ILs and their general applications based on these properties, this review focuses on the application of ILs in electroanalytical sensors.  相似文献   

11.
We have extended the study of anomalous IR properties, which were initially discovered on nanostructured films of platinum group metals and alloys, to nanostructured films of nickel, a member of the iron group triad, and broadened the fundamental knowledge on this subject. Nanostructured thin films of nickel supported on glassy carbon [nm-Ni/GC(n)] were prepared by electrochemical deposition under cyclic voltammetric conditions, and the thickness of films was altered systematically by varying the number (n) of potential cycling within a defined potential range for electrodeposition. Electrochemical in situ scanning tunneling microscopy (STM) was employed to monitor the electrochemical growth of nanostructured Ni films. These in situ STM images illustrated that, along the increase of the film thickness, Ni films have undergone a transformation from layer structure to island structure and finally to lumpish arris structure. Investigations by in situ FTIR spectroscopy employing adsorbed CO as the probe revealed that these nanostructures of Ni films yield abnormal IR features, Fano-like IR features, and normal IR features, respectively. The IR bands of CO adsorbed on Ni thin films of a layer structure were inverted in their direction and enhanced in their intensity up to 15.5 times on an nm-Ni/GC(4) electrode. The Fano-like IR features, which are defined as a bipolar band with its negative-going peak on the low wavenumber side and its positive-going peak on the high wavenumber side, are observed for the first time on Ni thin films of an island nanostructure, i.e., at the nm-Ni/GC(16) electrode. IR features changed to normal absorption in CO adsorbed on the nm-Ni/GC(25) electrode, i.e., that with lumpish arris nanostructured Ni film of a larger thickness.  相似文献   

12.
In recent years, room temperature ionic liquids (RTILs) have proven to be of great interest to analytical chemists. One important development is the use of RTILs as highly thermally stable GLC stationary phases. To date, nearly all of the RTIL stationary phases have been nitrogen-based (ammonium, pyrrolidinium, imidazolium, etc.). In this work, eight new monocationic and three new dicationic phosphonium-based RTILs are used as gas–liquid chromatography (GLC) stationary phases. Inverse gas chromatography (GC) analyses are used to study the solvation properties of the phosphonium RTILs through a linear solvation energy model. This model describes the multiple solvation interactions that the phosphonium RTILs can undergo and is useful in understanding their properties. In addition, the phosphonium-based stationary phases are used to separate complex analyte mixtures by GLC. Results show that the small differences in the solvent properties of the phosphonium ILs compared with ammonium-based ILs will allow for different and unique separation selectivities. Also, the phosphonium-based stationary phases tend to be more thermally stable than nitrogen-based ILs, which is an advantage in many GC applications.  相似文献   

13.
J.P. Zheng  C.M. Pettit 《Talanta》2010,81(3):1045-19285
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.  相似文献   

14.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

15.
Ionic liquids (ILs) are ambient temperature molten salts, which have attracted considerable attention owing to their unique properties. In this contribution, we review advanced materials composed of ILs and polymers for the basis of a new design protocol to fabricate novel materials. As electrolytes for electrochemical devices, cross‐linked polymers containing ILs (ion gels) are endowed with functional properties inherited from ILs and mechanical consistency derived from polymers. To create such materials, micro‐phase separation of block copolymers and colloidal arrays in the ILs are utilized. Based on the molecular design of task‐specific ILs, the resultant ion gels are applicable as electrolytes for actuator, fuel cell, and secondary battery applications. Thermo‐ and photo‐responsive polymers in ILs are also highlighted, whereby such stimuli elicit changes in the solubility of the self‐assembly of block copolymers and colloidal arrays in the ILs. Further, thermo‐ and photo‐reversible changes in the self‐assembled structure can be exploited to demonstrate sol‐gel transitions and fabricate photo‐healable materials.  相似文献   

16.
In this study, the influence of the film structure was investigated on the electrocatalytic oxygen reduction at GC electrodes covered with porphyrin and metalloporphyrin rings via the diazonium modification method. For that purpose, primarily, tetraphenylporphyrin (TPP) films on GC electrode surfaces were prepared by electroreduction of in situ generated diazonium salts of 5‐(4‐aminophenyl)‐10,15,20‐triphenylporphyrin (APP) and 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin (TAPP) molecules. Next, the formation of metalloporphyrin films on the modified surfaces was accomplished through the complexation reactions of surface porphyrin rings with metal ions in the salt solutions containing Mn(II), Fe(III) and Co(II) ions. The resulting porphyrin and metalloporphyrin layers were identified with XPS and ICP‐MS. The electrochemical barrier properties of the films on GC surfaces were examined by cyclic voltammetry in K3Fe(CN)6 aqueous solution. The electrocatalytic abilities of the resulting films were also investigated for the oxygen electrochemical reduction by employing cyclic voltammetry in PBS solutions saturated with oxygen. The results showed that the oxygen reduction potentials on modified GC electrodes were shifted to less negative potentials compared to that of bare GC electrode. Also, it was obtained that the oxygen reduction reaction was more effective on the GC electrodes modified with TPP rings by using TAPP molecules than those prepared by using APP molecules.  相似文献   

17.
This article first reports the preparation of a Prussian blue (PB) modified electrode with improved electrochemical properties at the functionalized glass carbon electrode (GC) by imidazolium based ionic liquid. The molecular ionic liquid film on the GC electrode has been found to influence the electrodeposition of PB by a way of enhancement of voltammetric currents, suggesting efficient electrodepositon. Such efficient electrodeposition was caused by the static electric effect which existed between the positively charged imidazolium group on the electrode surface and the negative ferric‐ferricyanide in solution. Compared with the PB/GC electrode, the PB/[Bmim][Cl]/GC electrode showed much better electrochemical stability after successive potential cycling for 250 cycles. A comparative study on amperometric responses of both electrodes to reduce H2O2 was also investigated. PB/[Bmim][Cl]/GC electrode showed a better electrocatalytic performance to H2O2 with wider linear detection range and higher sensitivity than that at the electrode without [Bmim][Cl]. Furthermore, the kinetics for both electrodes was discussed. The PB/[Bmim][Cl]/GC electrode possessed a greater diffusion coefficient.  相似文献   

18.
This work describes the characterization of the grafted 2‐benzo[c]cinnoline (2BCC) molecules at a glassy carbon (GC) electrode surface by voltammetry and spectroscopy. Attachment of the molecule to the carbon substrate was achieved by the electrochemical reduction of 2‐benzo[c]cinnoline diazonium salt (2BCC‐DAS). GC electrode modification was carried out in aprotic solution with 2BCC diazonium salt. Dopamine (DA) and ascorbic acid (AA) were used to prove the surface modification to see the blockage of the electron transfer. The presence of 2BCC at the GC electrode surface was characterized by cyclic voltammetry and Raman spectroscopy. Raman spectroscopy was used to monitor molecular bound properties of the adsorbates at the 2BCC‐GC surface and confirm the attachment of 2BCC molecules onto the GC surface. The thickness of the 2BCC film on GC was also investigated by ellipsometric measurement.  相似文献   

19.
Poly(N-isopropylacrylamide)-modified graphene oxide (PNIPAm-GO), which is a type of thermally responsive GO, was designed and synthesized through a covalent “grafting-from” strategy. The as-prepared modified nanosheets integrated the individual advantages of two components, such as the thermal sensitivity of the PNIPAm terminal as well as the conductivity and the open 2D structure of the GO substrate. PNIPAm-GO was able to perform the reversible regulation of hydrophilicity/hydrophobicity in aqueous solution upon variations in the temperature. Such a unique property might also lead to the utilization of PNIPAm-GO as an intelligent electrode material to achieve a switchable electrochemical response toward a [Fe(CN)6]3−/4− probe. The PNIPAm-GO modified glassy carbon electrode (PNIPAm-GO/GC electrode) was able to exhibit better electrochemical performance in an ON/OFF switching effect than the PNIPAm-modified glassy carbon electrode (PNIPAm/GC electrode) without GO owing to the intrinsic properties and large surface area of the introduced GO. Moreover, it was found that the PNIPAm-GO/GC electrode also displayed excellent thermally responsive electrocatalysis toward the detection of 1,4-dihydro-β-nicotinamide adenine dinucleotide (NADH) and dopamine (DA), which resulted in two different catalytic statuses on the same electrode. This kind of switchable catalytic performance of the PNIPAm-GO/GC electrode might greatly enhance the flexibility of its application, and thus it is expected to have wide potential for applications in the fields of biosensors and biocatalysis.  相似文献   

20.
简述了表面等离子体共振(SPR)的基本原理,并综述了表面等离子体共振技术在电化学反应过程中的应用。SPR技术可以无需任何标记原位实时地检测分子间的相互作用,也可用于连续监测吸附/脱附和缔合/解离过程。表面等离子共振光谱(SPRS)与电化学技术结合可用来同时表征和处理电极/溶液的界面,在电化学掺杂/去掺杂过程、吸附/脱附反应的研究、痕量物质的检测、薄膜厚度、介电常数的测定等方面的应用已取得了很大的进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号