首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the construction of two-direction tight wavelet frames First, a sufficient condition for a two-direction refinable function generating two-direction tight wavelet frames is derived. Second, a simple constructive method of two-direction tight wavelet frames is given. Third, based on the obtained two-direction tight wavelet frames, one can construct a symmetric multiwavelet frame easily. Finally, some examples are given to illustrate the results.  相似文献   

2.
Starting from any two compactly supported refinable functions in L2(R) with dilation factor d,we show that it is always possible to construct 2d wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L2(R). Moreover, the number of vanishing moments of each of these wavelet frames is equal to the approximation order of the dual MRA; this is the highest possible. In particular, when we consider symmetric refinable functions, the constructed dual wavelets are also symmetric or antisymmetric. As a consequence, for any compactly supported refinable function in L2(R), it is possible to construct, explicitly and easily, wavelets that are finite linear combinations of translates (d · – k), and that generate a wavelet frame with an arbitrarily preassigned number of vanishing moments.We illustrate the general theory by examples of such pairs of dual wavelet frames derived from B-spline functions.  相似文献   

3.
Construction of biorthogonal wavelets from pseudo-splines   总被引:4,自引:0,他引:4  
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10(2) (2001) 163–181], and their properties were extensively studied by Dong and Shen in [Pseudo-splines, wavelets and framelets, 2004, preprint]. It was further shown by Dong and Shen in [Linear independence of pseudo-splines, Proc. Amer. Math. Soc., to appear] that the shifts of an arbitrarily given pseudo-spline are linearly independent. This implies the existence of biorthogonal dual refinable functions (of pseudo-splines) with an arbitrarily prescribed regularity. However, except for B-splines, there is no explicit construction of biorthogonal dual refinable functions with any given regularity. This paper focuses on an implementable scheme to derive a dual refinable function with a prescribed regularity. This automatically gives a construction of smooth biorthogonal Riesz wavelets with one of them being a pseudo-spline. As an example, an explicit formula of biorthogonal dual refinable functions of the interpolatory refinable function is given.  相似文献   

4.
The concept of two-direction refinable functions and two-direction wavelets is introduced. We investigate the existence of distributional(or L~2-stable) solutions of the two-direction refinement equation: (?)(x)=(?)p_k~ (?)(mx-k) (?)p_k~-(?)(k-mx), where m≥2 is an integer.Based on the positive mask {p_k~ } and negative mask {p_k~-},the conditions that guarantee the above equation has compactly distributional solutions or L~2-stable solutions are established.Furthermore,the condition that the L~2-stable solution of the above equation can generate a two-direction MRA is given.The support interval of (?)(x) is discussed amply.The definition of orthogonal two-direction refinable function and orthogonal two-direction wavelets is presented,and the orthogonality criteria for two-direction refinable functions are established.An algorithm for construct- ing orthogonal two-direction refinable functions and their two-direction wavelets is presented.Another construction algorithm for two-direction L~2-refinable functions,which have nonnegative symbol masks and possess high approximation order and regularity,is presented.Finally,two construction examples are given.  相似文献   

5.
In this paper, the notion of two-direction vector-valued multiresolution analysis and the two-direction orthogonal vector-valued wavelets are introduced. The definition for two-direction orthogonal vector-valued wavelet packets is proposed. An algorithm for constructing a class of two-direction orthogonal vector-valued compactly supported wavelets corresponding to the two-direction orthogonal vector-valued compactly supported scaling functions is proposed by virtue of matrix theory and time-frequency analysis method. The properties of the two-direction vector-valued wavelet packets are investigated. At last, the direct decomposition relation for space L2(R)r is presented.  相似文献   

6.
Compactly Supported Tight Frames Associated with Refinable Functions   总被引:2,自引:0,他引:2  
It is well known that in applied and computational mathematics, cardinal B-splines play an important role in geometric modeling (in computer-aided geometric design), statistical data representation (or modeling), solution of differential equations (in numerical analysis), and so forth. More recently, in the development of wavelet analysis, cardinal B-splines also serve as a canonical example of scaling functions that generate multiresolution analyses of L2(−∞,∞). However, although cardinal B-splines have compact support, their corresponding orthonormal wavelets (of Battle and Lemarie) have infinite duration. To preserve such properties as self-duality while requiring compact support, the notion of tight frames is probably the only replacement of that of orthonormal wavelets. In this paper, we study compactly supported tight frames Ψ={ψ1,…,ψN} for L2(−∞,∞) that correspond to some refinable functions with compact support, give a precise existence criterion of Ψ in terms of an inequality condition on the Laurent polynomial symbols of the refinable functions, show that this condition is not always satisfied (implying the nonexistence of tight frames via the matrix extension approach), and give a constructive proof that when Ψ does exist, two functions with compact support are sufficient to constitute Ψ, while three guarantee symmetry/anti-symmetry, when the given refinable function is symmetric.  相似文献   

7.
This paper provides several constructions of compactly supported wavelets generated by interpolatory refinable functions. It was shown in [7] that there is no real compactly supported orthonormal symmetric dyadic refinable function, except the trivial case; and also shown in [10,18] that there is no compactly supported interpolatory orthonormal dyadic refinable function. Hence, for the dyadic dilation case, compactly supported wavelets generated by interpolatory refinable functions have to be biorthogonal wavelets. The key step to construct the biorthogonal wavelets is to construct a compactly supported dual function for a given interpolatory refinable function. We provide two explicit iterative constructions of such dual functions with desired regularity. When the dilation factors are larger than 3, we provide several examples of compactly supported interpolatory orthonormal symmetric refinable functions from a general method. This leads to several examples of orthogonal symmetric (anti‐symmetric) wavelets generated by interpolatory refinable functions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper, the concept of vector-valued wavelet packets in space L 2(?+, ? N ) is introduced. Some properties of vector-valued wavelets packets are studied and orthogonality formulas of these wavelets packets are obtained. New orthonormal basis of L 2(?+, ? N ) is obtained by constructing a series of subspaces of vector-valued wavelet packets.  相似文献   

9.
In this paper, vector-valued multiresolution analysis and orthogonal vector-valued wavelets are introduced. The definition for orthogonal vector-valued wavelet packets is proposed. A necessary and sufficient condition on the existence of orthogonal vector-valued wavelets is derived by means of paraunitary vector filter bank theory. An algorithm for constructing a class of compactly supported orthogonal vector-valued wavelets is presented. The properties of the vector-valued wavelet packets are investigated by using operator theory and algebra theory. In particular, it is shown how to construct various orthonormal bases of L2(R, Cs) from the orthogonal vector-valued wavelet packets.  相似文献   

10.
The first type of pseudo-splines were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003) 1–46; I. Selesnick, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10 (2) (2001) 163–181] to construct tight framelets with desired approximation orders via the unitary extension principle of [A. Ron, Z. Shen, Affine systems in L2(Rd): The analysis of the analysis operator, J. Funct. Anal. 148 (2) (1997) 408–447]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type) of pseudo-splines to construct symmetric or antisymmetric tight framelets with desired approximation orders. Pseudo-splines provide a rich family of refinable functions. B-splines are one of the special classes of pseudo-splines; orthogonal refinable functions (whose shifts form an orthonormal system given in [I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909–996]) are another class of pseudo-splines; and so are the interpolatory refinable functions (which are the Lagrange interpolatory functions at Z and were first discussed in [S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185–204]). The other pseudo-splines with various orders fill in the gaps between the B-splines and orthogonal refinable functions for the first type and between B-splines and interpolatory refinable functions for the second type. This gives a wide range of choices of refinable functions that meets various demands for balancing the approximation power, the length of the support, and the regularity in applications. This paper will give a regularity analysis of pseudo-splines of the both types and provide various constructions of wavelets and framelets. It is easy to see that the regularity of the first type of pseudo-splines is between B-spline and orthogonal refinable function of the same order. However, there is no precise regularity estimate for pseudo-splines in general. In this paper, an optimal estimate of the decay of the Fourier transform of the pseudo-splines is given. The regularity of pseudo-splines can then be deduced and hence, the regularity of the corresponding wavelets and framelets. The asymptotical regularity analysis, as the order of the pseudo-splines goes to infinity, is also provided. Furthermore, we show that in all tight frame systems constructed from pseudo-splines by methods provided both in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003) 1–46] and this paper, there is one tight framelet from the generating set of the tight frame system whose dilations and shifts already form a Riesz basis for L2(R).  相似文献   

11.
In the spaces of complex periodic sequences, we use the Vilenkin-Chrestenson transforms to construct new orthogonal wavelet bases defined by finite collections of parameters. Earlier similar bases were defined for the Cantor and Vilenkin groups by means of generalized Walsh functions. It is noted that similar constructions can be realized for biorthogonal wavelets as well as for the space ? 2(?+).  相似文献   

12.
In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in $\mathbb {R}^{2}$ and $\mathbb {R}^{3}$ . We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classical box-spline direction matrices. These non-separable band-limited definable functions are then used to construct non-separable band-limited wavelet tight frames via the unitary and oblique extension principles. However, these refinable functions cannot be used for constructing Riesz wavelets and orthonormal wavelets in low dimensions as they are not stable. Another construction scheme is then developed to construct stable refinable functions in low dimensions by using a special class of direction matrices. The resulting stable refinable functions allow us to construct a class of MRA-based non-separable band-limited Riesz wavelets and particularly band-limited orthonormal wavelets in low dimensions with small frequency support.  相似文献   

13.
Multiwavelet Frames from Refinable Function Vectors   总被引:4,自引:0,他引:4  
Starting from any two compactly supported d-refinable function vectors in (L 2(R)) r with multiplicity r and dilation factor d, we show that it is always possible to construct 2rd wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L 2(R) and they achieve the best possible orders of vanishing moments. When all the components of the two real-valued d-refinable function vectors are either symmetric or antisymmetric with their symmetry centers differing by half integers, such 2rd wavelet functions, which generate a pair of dual d-wavelet frames, can be real-valued and be either symmetric or antisymmetric with the same symmetry center. Wavelet frames from any d-refinable function vector are also considered. This paper generalizes the work in [5,12,13] on constructing dual wavelet frames from scalar refinable functions to the multiwavelet case. Examples are provided to illustrate the construction in this paper.  相似文献   

14.
The theme is to smooth characteristic functions of Parseval frame wavelet sets by convolution in order to obtain implementable, computationally viable, smooth wavelet frames. We introduce the following: a new method to improve frame bound estimation; a shrinking technique to construct frames; and a nascent theory concerning frame bound gaps. The phenomenon of a frame bound gap occurs when certain sequences of functions, converging in L 2 to a Parseval frame wavelet, generate systems with frame bounds that are uniformly bounded away from 1. We prove that smoothing a Parseval frame wavelet set wavelet on the frequency domain by convolution with elements of an approximate identity produces a frame bound gap. Furthermore, the frame bound gap for such frame wavelets in L 2(? d ) increases and converges as d increases.  相似文献   

15.
A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton's result on wavelet tight frames inL2( ) is generalized to then-dimensional case. Two ways of constructing certain dual wavelet tight frames inL2( n) are suggested. Finally, examples of smooth wavelet tight frames inL2( ) andH2( ) are provided. In particular, an example is given to demonstrate that there is a function ψ whose Fourier transform is positive, compactly supported, and infinitely differentiable which generates a non-MRA wavelet tight frame inH2( ).  相似文献   

16.
In areas of geometric modeling and wavelets, one often needs to construct a compactly supported refinable function φ which has sufficient regularity and which is fundamental for interpolation [that means, φ(0)=1 and φ(α)=0 for all α∈ Z s ∖{0}].
Low regularity examples of such functions have been obtained numerically by several authors, and a more general numerical scheme was given in [1]. This article presents several schemes to construct compactly supported fundamental refinable functions, which have higher regularity, directly from a given, continuous, compactly supported, refinable fundamental function φ. Asymptotic regularity analyses of the functions generated by the constructions are given.The constructions provide the basis for multivariate interpolatory subdivision algorithms that generate highly smooth surfaces.
A very important consequence of the constructions is a natural formation of pairs of dual refinable functions, a necessary element in constructing biorthogonal wavelets. Combined with the biorthogonal wavelet construction algorithm for a pair of dual refinable functions given in [2], we are able to obtain symmetrical compactly supported multivariate biorthogonal wavelets which have arbitrarily high regularity. Several examples are computed.  相似文献   

17.
Marcin Bownik 《Acta Appl Math》2009,107(1-3):195-201
We study properties of the closure of the set of tight frame wavelets. We give a necessary condition and a sufficient condition for a function to be in this closure. In particular, we show that the collection of tight frame wavelets is not dense in L 2(? n ), which answers a question posed by D. Han and D. Larson (Preprint, 2008).  相似文献   

18.
We construct directional wavelet systems that will enable building efficient signal representation schemes with good direction selectivity. In particular, we focus on wavelet bases with dyadic quincunx subsampling. In our previous work (Yin, in: Proceedings of the 2015 international conference on sampling theory and applications (SampTA), 2015), we show that the supports of orthonormal wavelets in our framework are discontinuous in the frequency domain, yet this irregularity constraint can be avoided in frames, even with redundancy factor <2. In this paper, we focus on the extension of orthonormal wavelets to biorthogonal wavelets and show that the same obstruction of regularity as in orthonormal schemes exists in biorthogonal schemes. In addition, we provide a numerical algorithm for biorthogonal wavelets construction where the dual wavelets can be optimized, though at the cost of deteriorating the primal wavelets due to the intrinsic irregularity of biorthogonal schemes.  相似文献   

19.
Anewwavelet-based geometric mesh compression algorithm was developed recently in the area of computer graphics by Khodakovsky, Schröder, and Sweldens in their interesting article [23]. The new wavelets used in [23] were designed from the Loop scheme by using ideas and methods of [26, 27], where orthogonal wavelets with exponential decay and pre-wavelets with compact support were constructed. The wavelets have the same smoothness order as that of the basis function of the Loop scheme around the regular vertices which has a continuous second derivative; the wavelets also have smaller supports than those wavelets obtained by constructions in [26, 27] or any other compactly supported biorthogonal wavelets derived from the Loop scheme (e.g., [11, 12]). Hence, the wavelets used in [23] have a good time frequency localization. This leads to a very efficient geometric mesh compression algorithm as proposed in [23]. As a result, the algorithm in [23] outperforms several available geometric mesh compression schemes used in the area of computer graphics. However, it remains open whether the shifts and dilations of the wavelets form a Riesz basis of L2(?2). Riesz property plays an important role in any wavelet-based compression algorithm and is critical for the stability of any wavelet-based numerical algorithms. We confirm here that the shifts and dilations of the wavelets used in [23] for the regular mesh, as expected, do indeed form a Riesz basis of L2(?2) by applying the more general theory established in this article.  相似文献   

20.
We provide explicit criteria for wavelets to give rise to frames and atomic decompositions in L2(?d), but also in more general Banach function spaces. We consider wavelet systems that arise by translating and dilating the mother wavelet, with the dilations taken from a suitable subgroup of GL(?d), the so-called dilation group.The paper provides a unified approach that is applicable to a wide range of dilation groups, thus giving rise to new atomic decompositions for homogeneous Besov spaces in arbitrary dimensions, but also for other function spaces such as shearlet coorbit spaces. The atomic decomposition results are obtained by applying the coorbit theory developed by Feichtinger and Gröchenig, and they can be informally described as follows: Given a function ψ ∈ L2(?d) satisfying fairly mild decay, smoothness and vanishing moment conditions, any sufficiently fine sampling of the translations and dilations will give rise to a wavelet frame. Furthermore, the containment of the analyzed signal in certain smoothness spaces (generalizing the homogeneous Besov spaces) can be decided by looking at the frame coefficients, and convergence of the frame expansion holds in the norms of these spaces. We motivate these results by discussing nonlinear approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号