首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Suspension polymerizations for divinylbenzene/toluene droplets dissolving different kinds of methacrylate and acrylate homopolymers were carried out. Hollow polymer particles were produced not with high polarity polymers but with low polarity polymers. The results indicate that the preferential adsorption of the homopolymers having high polarity at the interface of the droplets depresses the formation of the hollow structure. A minimum polymer concentration was necessary to produce hollow particles. Received: 22 June 1999/Accepted: 7 January 2000  相似文献   

2.
The disorderly exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposites were obtained in a two-stage process by the in situ bulk polymerization of methyl methacrylate (MMA) in the presence of 10-undecenoate intercalated LDH (LDH-U). The dispersed behavior of the LDH-U in the PMMA matrix was identified by using X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/visible transmission spectroscopy. All these nanocomposites showed significantly enhancement of glass transition temperature (Tg) and the decomposition temperatures compared to pristine PMMA, as identified in differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis. The tensile modulus of these nanocomposites was also enhanced by incorporating the LDH-U into the PMMA matrix and increased as the amount of LDH-U increased. According to the analytical method of Ozawa-Flynn, the degradation activation energies of these nanocomposites are higher than that of pristine PMMA.  相似文献   

3.
This article describes a versatile two‐step method for gold/polyaniline derivative core/shell nanocomposites with the aid of nonionic surfactant F127. First, F127 and monomer were introduced to gold colloids followed by the addition of oxidant to initiate the polymerization of monomer to afford a conducting polymer shell around each gold nanoparticle. Experimental parameters, such as kinds and concentrations of surfactant and monomer, gold core size and shape, reaction time, were systematically investigated to disclose the underground mechanisms involved in the formation of gold/polymer core/shell nanocomposites. Furthermore, Fourier transform infrared, ultraviolet–visible, X‐ray diffraction, and X‐ray photoelectron spectroscopy techniques were used to characterize the gold/polymer core/shell nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3903–3912, 2010  相似文献   

4.
An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.  相似文献   

5.
A series of A3‐type star poly(methylmethacrylate)/clay nanocomposites is prepared by in situ atom transfer radical polymerization (ATRP) initiated from organomodified montmorillonite containing quaternary trifunctional ATRP initiator. The first order kinetic plot shows a linear behavior, indicating the controlled character of the polymerization. The resulting nanocomposites are characterized by spectroscopic (XRD), thermal (DSC and TGA), and microscopic (TEM) analyses. The exfoliated nanocomposite has been obtained when polymerization was conducted with 1% of organic clay loading. Thermal analyses show that all nanocomposites have higher glass transition values and thermal stabilities compared to neat polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5257–5262  相似文献   

6.
The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and α-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.  相似文献   

7.
In the present work, we explore the possibility to deposit polyaniline–silicon dioxide (PAni–SiO2) and polythiophene–silicon dioxide (PTh–SiO2) nanocomposites through a plasma polymerization route. The films were generated by spraying of mixtures of nano-sized silica particles dispersed in the liquid monomer into a plasma stream of the DC-plasma discharge reactor. The silica in the resulted polymer matrix changes the conduction mechanisms varying from ohmic to ballistic and traps inducing the space charged limited currents (SCLC). The silica modifies the morphology and composition of the deposited films.  相似文献   

8.
Nanocomposites of sodium smectite with polyether‐ and polystyrene‐containing pendant cyclic carbonates offer a novel approach to improving hydraulic barrier properties of Na‐smectite liners to saline leachates. The cyclic carbonate polyethers were prepared by cationic ring opening polymerization of a cyclic carbonate‐containing epoxide, whilst polystyrene polymers having pendant cyclic carbonate groups were obtained from radical photopolymerization of styrene. Na‐smectite nanocomposites of these polymers were formed via clay in situ polymerization and solution intercalation methods. X‐ray diffraction (XRD) and FT‐IR analysis confirmed that the polyether can be intercalated within the layers of smectite via in situ as well as solution intercalation of the pre‐formed polymer. The cyclic carbonate polyether nanocomposite was more resistant to leaching in 3M aqueous sodium chloride than its respective cyclic carbonate. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2421–2429  相似文献   

9.
Among several different approaches to form Pd/Ag alloys for hydrogen separation applications, ex situ studies carried out by conventional X-ray point scanning detectors might fail to reveal the key aspects of the phase transformation between Pd and Ag metals. In this respect, in situ time-resolved high-temperature X-ray diffraction (HTXRD) was employed to study the Pd/Ag alloy phase nucleation and growth kinetics. By the use of linear position sensitive detectors, advanced optics and profile fitting with the use of JADE-6.5 software, isothermal phase evolution of the Pd/Ag alloy at 500 °C, 550 °C and 600 °C under hydrogen atmosphere were quantified to elucidate the mechanistic details of the Pd/Ag alloy phase nucleation and growth pattern. Analysis of the HTXRD data by the Avrami model indicated that the nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The value of the Avrami exponent, n, was found to increase with temperature with the values of 0.34, 0.39 and 0.67 at 500 °C, 550 °C and 600 °C, respectively. In addition, parabolic rate law analysis suggested that the nucleation of the Pd/Ag alloy phase was through a heterogeneous nucleation mode, in which the nucleation sites were defined as the non-equilibrium defects. Indeed, the cross-sectional SEI micrographs indicated that the Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers formed by the electroless plating. Based on the Avrami model and the parabolic rate law, the estimated activation energies for the phase transformation were 236.5 kJ/mol and 185.6 kJ/mol and in excellent agreement with the literature values (183–239.5 kJ/mol). Finally, the in situ annealing of the 15.6 μm thick composite Pd/Ag/PSS membrane at 550 °C in hydrogen atmosphere indicated that the Pd/Ag alloy phase formation was not complete even after 500 h. According to the Avrami model, the increase in the hydrogen permeance from 7.1 m3/m2 h atm0.5 to 21.3 m3/m2 h atm0.5 at 550 °C over a period of 500 h corresponded to an 83% Pd/Ag alloy phase formation.  相似文献   

10.
In this study, a novel and effective suspension polymerization has been employed to prepare functional magnetic porous SrFe12O19/P(St-DVB-MAA) microspheres in the presence of bilayer surfactants (sodium dodecyl benzene sulfonate (SDBS) and oleic acid (OA)) coated on micro-size magnetic SrFe12O19. This was achieved by pre-polymerizing the organic phase, which contained co-monomers, porogens and treated magnetic particles, at 65°C for 0.5 h under ultrasound conditions. Aqueous solutions containing a dispersion agent were then added to effect suspension polymerization. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and magnetic property measurement system (MPMS) were used to characterize the functional magnetic porous microspheres. The results show that the microparticles are well shaped with a uniform size distribution of about 0.5 ∼ 0.7 mm and the surfaces of the microspheres have many micro-pores with an average diameter of 0.533 μm. There are carboxyl groups (−COOH) on the surface of the microspheres to the extent of 0.65 mmol g−1, as determined by conductometric titration. According to the XRD spectra, iron oxide consists mainly of SrFe12O19 which reveals hexahedral structure. The content of magnetic SrFe12O19 reaches 17.81% (by mass), and the microspheres have good heat resistance. The magnetic porous microspheres are ferromagnetic with high residual magnetization and coercivity, 21.59 emu g−1 and 4.13 kOe, respectively. The saturation magnetisation is around 42.85 emu g−1.   相似文献   

11.
Summary In situFTIR spectroscopy was used to study the interaction of<span style='font-family:Symbol;mso-bidi-font-family:Symbol'>b-picoline with the surface of a V-Ti-O catalyst in the temperature range of 120-300°C.b-picoline was found to react with the Lewis acid sites of the catalyst to form a nitrogen-coordinated complex. This complex turns into an aldehyde-like complex at</o:p>150-250°C and then into a nicotinate, which is a direct precursor of nicotinic acid.</o:p>  相似文献   

12.
Polyethylene nanocomposites containing silver nanoparticles with antimicrobial properties were produced via in situ polymerization. The silver nanoparticles were added together with the catalytic system (metallocene catalyst and methylaluminoxane, MAO, as cocatalyst) directly to the reactor. The polymerization activity did not present significant changes with the incorporation of the silver nanoparticles in comparison to the homopolymerization without filler. The effect of various silver nanoparticle contents on silver ion release and antimicrobial efficacy against Escherichia Coli were studied. Nanocomposites containing higher nanosilver concentrations (5 wt.%) showed the highest silver ion release, and after 24 h reached 99.99% of efficacy against the bacteria compared with the neat PE. Transmission electron microscopy (TEM) images showed that the nanospheres were well dispersed throughout the polyethylene matrix.  相似文献   

13.
Cracks are frequently formed in α-alumina supported MFI membranes during calcination. To better understand crack formation, in situ powder diffraction data were collected during calcination of a type of MFI membrane (ca. 1800 nm thick) which is known to crack reproducibly. In addition, data for MFI powder and a blank support were also collected. Both a synchrotron radiation facility and an in-house instrument were used. The unit cell parameters were determined with the Rietveld method, and the strain in the direction perpendicular to the film surface was calculated for the film as well as for the support. The microstrain in the support was also estimated. Based on the results obtained here, a model for crack formation in this type of MFI membrane was proposed. The lack of cracks in other types of MFI membranes (ca. 500 nm) prepared in our laboratory is also explained by the model. In thicker MFI films, the crystals are well intergrown. During heating, the MFI crystals contract and the α-alumina support expands. Consequently, a thermal stress develops in the composite which eventually leads to formation of cracks in the film and structural defects in the support. In thinner films, the crystals are less well intergrown and the thermal expansion mismatch leads to opening of grain boundaries rather than cracks.  相似文献   

14.
A simple and green method is developed to prepare hexagonal boron nitride(h-BN)/poly(vinyl alcohol) (PVA) nanocomposites by using water as a common solvent of h-BN nanosheets and PVA.The obtained h-BN/PVA nanocomposites are highly transparent,and have significantly improved mechanical and thermal properties.They may outperform nano-clay and nano-alumina/PVA nanocomposites as flexible optoelectronic devices,optical windows and heat-releasing materials operated in oxidative or corrosive environment.  相似文献   

15.
Nanocomposites of polyethylene (HDPE) and poly(ethylene‐co‐1‐octene) thermoplastic elastomers, both containing boehmites with variable sizes, shapes, and aspect ratios (1–20), were prepared by means of in situ olefin polymerization and melt compounding. The in situ olefin polymerization in the presence of boehmite nanorods afforded nanocomposites containing 4–8 wt % of boehmite. In an alternative process, the in situ olefin polymerization was used to produce polyolefins with high boehmite content of 50 wt % as masterbatches for polyolefin melt compounding with ethylene homo‐ and copolymers. The addition of the boehmite nanofillers improved the stiffness without sacrificing high elongation at break. The stiffness, as expressed by Young's modulus, increased with increasing boehmite aspect ratio. In case of thermoplastic elastomer nanocomposites the increase of stiffness was accompanied by a simultaneous increase of elongation at break. According to transmission electron microscopy (TEM), fine dispersion of the polar boehmite nanorods and nanoplatelets within the nonpolar hydrocarbon polymer matrix was obtained without requiring the addition of special dispersing agents or functionalized polyolefin compatibilizers. The comparison of melt compounding of polyethylene with boehmites or polyethylene/boehmite masterbatches revealed that compounding of masterbatches prepared by in situ polymerization filling afforded much finer and more uniform nanoboehmite dispersions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2755–2765, 2008  相似文献   

16.
Three variants of solid-state ion exchange were studied. Iron exchange was found to proceed in the first case, in theFeCl2+NH4ZSM-5 FeZSM-5 + NH4Cl process, even at low exchange capacity (Si/Al = 25).The second, Fe2O3 (hematite) + HZ direct reaction does not result in any noticeable interaction for eitherZ = Y or ZSM-5. This process can significantly be promoted by introducing CCl4 vapor via forming chlorine-containingmobile species. However, the structure of the Y zeolite largely collapses during this treatment, whereas the crystalline state of ZSM-5is preserved.  相似文献   

17.
Thermomechanical properties and crystallization behavior of poly(ethylene terephthalate) (PET) nanocomposites containing layered double hydroxide (LDH) were investigated. To enhance the compatibility between PET matrix and LDH, dimethyl 5‐sulfoisophthalate (DMSI) anion intercalated LDH (LDH‐DMSI) was synthesized by coprecipitation method, and its structure was confirmed by Fourier transform infrared (FTIR) spectrometer and X‐ray diffraction (XRD) measurements. Then, PET nanocomposites with LDH‐DMSI content of 0, 0.5, 1.0, and 2.0 wt% were prepared by in‐situ polymerization. The dispersion morphologies were observed by transmission electron microscopy (TEM) and XRD, showing that LDH‐DMSI was exfoliated in PET matrix. Thermal and mechanical properties, such as thermal stability, tensile modulus, and tensile yield strength of nanocomposites, were enhanced by exfoliated LDH‐DMSI nanolayers. However, elongation at break was drastically decreased with LDH loading owing to the increased stiffness and microvoids. The effect of exfoliated nanolayers, which acted as a nucleating agent confirmed by differential scanning calorimeter (DSC), on the microstructural parameters during isothermal crystallization, was analyzed by synchrotron small‐angle X‐ray scattering (SAXS). It is believed that nanocomposites could be crystallized more easily owing to the increased nucleation sites, which lead to the decrease of average amorphous region size and the long period with the increase of LDH‐DMSI content. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 28–40, 2007  相似文献   

18.
The following triblock–comb copolymers of isoprene (I) and styrene (S)—PS‐b‐(PI‐g‐PI)‐b‐PS, PS‐b‐[PI‐g‐(PI‐b‐PS)]‐b‐PS, and (PS‐g‐PS)‐b‐(PI‐g‐PI)‐b‐(PS‐g‐PS) (where PS is polystyrene and PI is polyisoprene)—with PS contents of 20–30% were synthesized with high‐vacuum techniques and the anionic copolymerization of styrenic‐tipped macromonomers with I and S. The macromonomers, prepared by the reaction of living PI or PS with 4‐(chlorodimethylsilyl) styrene, were used without isolation. Molecular characterization by size exclusion chromatography, size exclusion chromatography/two‐angle laser light scattering, and NMR spectroscopy indicated that the triblock–comb copolymers had high molecular and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4030–4039, 2005  相似文献   

19.
The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid–liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detection, is described. The speciation analysis of nine organotin compounds includes low molecular weight–low boiling (non-pesticidal) and high molecular weight–high boiling analytes (pesticidal) of significant environmental interest. The minimum time for sodium tetraethylborate alkylation, using mechanical agitation, is determined to be 15 min in order to ensure the complete derivatization of the entire list of analytes. The utilization of a “hot needle” and a rapid injection rate is shown to be an efficacious means to eliminate “mass” or “needle” discrimination when determining the mixture of organotin compounds. Method detection limits are calculated to be in the low ng L− 1 range. The final method is applied to various water samples; storm water from the Cincinnati area demonstrated low native levels of three of the organotin compounds.  相似文献   

20.
The copolymerization of propylene with allyldimethylsilane (ADMS) was carried out with conventional Ziegler-Natta catalyst supported on MgCl2. The effects of the concentration of ADMS in the feed on the polymerization reaction and copolymer properties were investigated. The resulting copolymer PP-co-ADMS was chlorinated to PP-Si-Cl by refluxing the copolymer with SOCl2 in benzene. The chlorinated copolymer was used to initiate ATRP of MMA with CuCl/PMDETA as catalyst to produce graft copolymer PP-g-PMMA, which was characterized with 1H NMR, 13C NMR, GPC and DSC. Polymer blend of iPP/PP-g-PMMA/PMMA was prepared and the results shown that PP-g-PMMA was an effective compatilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号