首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A new calculation of the atmospheric fluxes of cosmic-ray hadrons and muons in the energy range 10–104 GeV is performed on the basis of the method for solving nuclear-cascade equations with allowance for a nonscaling behavior of inclusive hadron-production cross sections, the growth of cross sections for inelastic hadron-nucleus collisions with increasing energy, and a non-power-law character of the primary spectrum. The fluxes of secondary cosmic rays at various levels in the atmosphere are calculated for three models of the spectrum and composition of primary cosmic rays. The effect of uncertainties in the spectrumand composition of primary cosmic rays on the flux of atmosphericmuons and their charge ratio at sea level is investigated. The calculated energy spectra of muons at sea level are compared with the results of previous experiments and the results of recent measurements performed by means of the L3 + Cosmic and CosmoALEPH spectrometers, as well as with the results of other calculations.  相似文献   

2.
The energy spectra of extragalactic sources of cosmic rays are calculated by solving an inverse problem of the transport of cosmic rays with energies of 1018–1021 eV in a Universe filled with background electromagnetic radiation. Calculations are performed using cosmic-ray spectra measured on Earth in Auger experiments. It is assumed that protons and iron nuclei dominate in the composition of a source.  相似文献   

3.
Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e? have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 ± 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.  相似文献   

4.
Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling us the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ-ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ-ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ-ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multimessenger observations are bringing us ever closer to solving the cosmic-ray mystery.  相似文献   

5.
It is suggested that the physical mechanism responsible for the acceleration of cosmic rays is due to the stochastic (or fluctuational) structure of space-time at small distances. A method of introducing fluctuations in a conformally flat Riemannian space-time metric due to ultrahigh energy particles is presented, from which a nonlinear dynamics of particles and equations for the electromagnetic field are obtained. The former admits the acceleration mechanism for cosmic-ray particles and the extreme energy increases during the evolution of the Universe. In our model the energy of the cosmic-ray particle and its radius (the effective Schwarzschild), the age of the universe, and the value of the fundamental length are connected with one another and are determined by a unified formula, Einstein's relation for the relativistic particle energy. It allows one to define experimentally the value of the fundamental length, which is l=1.56×10 –33 cm for the maximum proton energy observed in cosmic rays. The problem of the energy spectrum of the cosmic rays and the ratio of intensities of the electron component to the proton component at the same energy level are also discussed.On leave of absence from the Academy of Sciences, Mongolian People's Republic, Ulan-Bator, Mongolia.  相似文献   

6.
A new method is described for estimating the absolute flux of solar cosmic rays based on the data from a single neutron monitor. The method is capable of yielding the energy spectrum at the isotropic phase of a solar flare using the available data from the currently operable worldwide network of cosmic-ray stations. The method is based on the determination of the effective momentum or energy for which the particle flux derived from the neutron-monitor count rate is weakly sensitive to small variations in the exponent of the power-law spectrum. A comparison of the calculations with direct space-borne measurements and calculations by other authors based on the data from the neutron-monitor network shows their satisfactory agreement for the last ground-level enhancement of solar cosmic rays observed on December 13, 2006.  相似文献   

7.
The variations of the cosmic-ray rigidity spectrum in the energy range from 0.8 MeV to several dozen GeV at solar proton events in January 2005 and December 2006 have been analyzed. A comparison of the observed and model spectra revealed the power range of direct detection of solar cosmic rays and moments of their observations.  相似文献   

8.
The possibility of measuring the energy of cosmic-ray nuclei (for energies higher than 1 TeV) by means of recording the greatest specific energy deposition in hadron showers generated in dense matter is investigated. This method makes it possible to improve the accuracy of energy measurements by thin calorimeters in studying high-energy cosmic rays at high altitudes. Attainable accuracies in measuring energy are considered for the cases of light and heavy nuclei. The results of a relevant simulation are compared with data from the Kosmos-1713 satellite-borne experiment.  相似文献   

9.
The results of experiments with X-ray emulsion chambers performed at SINP over the last 40 years are considered. Wide-ranging experiments to study cosmic rays by this technique were begun at SINP in 1968 with the active support of S.N. Vernov, whose 100th birthday we celebrate in 2010. As a result, the most extensive measurements of cosmic-ray muon spectra were made, the ultrahigh-energy hadron interaction characteristics in the Pamir experiment were investigated, and data on the mass composition of primary cosmic rays in stratospheric experiments were obtained. We took part in these experiments and in the experimental data analysis. The experience of working with emulsion material gained over many years is currently being used in the OPERA experiment to study neutrino oscillations.  相似文献   

10.
We study the propagation and injection models of cosmic rays using the latest measurements of the boron-to-carbon ratio and fluxes of protons, helium, carbon, and oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Explorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The Advanced Composition Explorer(ACE) data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity( a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.  相似文献   

11.
Scattering rates for a Goldreich-Sridhar (GS) spectrum of anisotropic, incompressible, magnetohydrodynamic turbulence are calculated in the quasilinear approximation. Because the small-scale fluctuations are constrained to have wave vectors nearly perpendicular to the background magnetic field, scattering is too weak to provide either the mean-free paths commonly used in Galactic cosmic-ray propagation models or the mean-free paths required for acceleration of cosmic rays at quasiparallel shocks. Where strong pitch-angle scattering occurs, it is due to fluctuations not described by the GS spectrum, such as fluctuations generated by streaming cosmic rays.  相似文献   

12.
Detailed calculation of the energy spectra of ultrahigh-energy cosmic rays has been performed. The spectral features related to the interaction of protons with cosmic microwave background have been analyzed. The calculated spectra are compared with the experimental data obtained at the giant detectors for ultrahigh-energy cosmic rays.  相似文献   

13.
The neutron fraction in the very high-energy cosmic rays near the Greisen-Zatsepin-Kuzmin (GZK) cutoff energy is analyzed by taking into account the time dilation effect of the neutron decays and also the pion photoproduction behaviors above the GZK cutoff. We predict a non-trivial neutron fraction above the GZK cutoff and a negligibly small neutron fraction below. However, there should be a large antiproton fraction in the high-energy cosmic rays below the GZK cutoff in several existing models for the observed cosmic-ray events above and near the GZK cutoff. Such a large antiproton fraction can manifest itself by the muon charge ratio μ+- in the collisions of the primary nucleon cosmic rays with the atmosphere, if there is no neutron contribution. We suggest to use the muon charge ratio as one of the information to detect the composition of the primary cosmic rays near or below the GZK cutoff.  相似文献   

14.

The space-based GAMMA-400 gamma-ray telescope will measure the fluxes of gamma rays in the energy range from ∼20 MeV to several TeV and cosmic-ray electrons and positrons in the energy range from several GeV to several TeV to investigate the origin of gamma-ray sources, sources and propagation of the Galactic cosmic rays and signatures of dark matter. The instrument consists of an anticoincidence system, a converter-tracker (thickness one radiation length, 1 X0), a time-of-flight system, an imaging calorimeter (2 X0) with tracker, a top shower scintillator detector, an electromagnetic calorimeter from CsI(Tl) crystals (16 X0) with four lateral scintillation detectors and a bottom shower scintillator detector. In this paper, the capability of the GAMMA-400 gamma-ray telescope for electron and positron measurements is analyzed. The bulk of cosmic rays are protons, whereas the contribution of the leptonic component to the total flux is ∼10−3 at high energy. The special methods for Monte Carlo simulations are proposed to distinguish electrons and positrons from proton background in the GAMMA-400 gamma-ray telescope. The contribution to the proton rejection from each detector system of the instrument is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of up to ∼1 × 104.

  相似文献   

15.
Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1 % of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics. The status of the field will be reviewed, with a focus on these recent scientific results.  相似文献   

16.
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.  相似文献   

17.
Summary This is a rapporteur paper for the XXIV International Cosmic-Ray Conference covering topics of anomalous cosmic rays, shock acceleration, modulation and transport theory, cosmic-ray gradients, corotating interaction regions, coronal-mass ejections, and solar neutrinos. Among the highlights of the meeting are —conclusive proof that most anomalous cosmic rays are singly charged,—undisputed detection of anomalous cosmic-ray hydrogen,—discovery of unexpectedly large anisotropies of pickup ions,—observation of pronounced solar rotational modulation of cosmic-ray fluxes to the highest heliolatitudes (∼80°) probed by the Ulysses spacecraft, and—new measurements of modulation effects sensitive to particle charge sign. Rapporteur talk given at the XXIV International Cosmic-Ray Conference, Rome, August 28–September 8, 1995.  相似文献   

18.
19.
The last decade has been dense with new developments in the search for the sources of Galactic cosmic rays. Some of these developments have confirmed the tight connection between cosmic rays and supernovae in our Galaxy, through the detection of gamma rays and the observation of thin non-thermal X-ray rims in supernova remnants. Some others, such as the detection of features in the spectra of some chemicals, opened new questions on the propagation of cosmic rays in the Galaxy and on details of the acceleration process. Here, I will summarize some of these developments and their implications for our understanding of the origin of cosmic rays. I will also discuss some new avenues that are being pursued in testing the supernova origin of Galactic cosmic rays.  相似文献   

20.
The PAMELA satellite-borne experiment is designed to study cosmic rays over a broad energy range. The apparatus has been in near-Earth cosmic space from June 2006 to the present time. It is equipped with a magnetic spectrometer for determining the sign of the particle charge and rigidity. In solving some problems, however, information from the magnetic spectrometer becomes inaccessible, so that it is necessary to employ a calorimeter to separate the electron and nuclear cosmic-ray components. A procedure for separating these components for particles arriving off the magnetic-spectrometer aperture is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号