首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interlaboratory study was conducted to evaluate the accuracy and precision of a method for ephedrine-type alkaloids [i.e., norephedrine (NE), norpseudoephedrine (NPE), ephedrine (E), pseudoephedrine (PE), methylephedrine (ME), and methylpseudoephedrine (MPE)] in dietary supplements and botanicals. The amount of ephedrine-type alkaloids present was determined using liquid chromatography with tandem mass selective detection. The samples were diluted to reflect a concentration of 0.0200 to 1.00 microg/mL for each alkaloid. An internal standard was added and the alkaloids were separated using a 5 microm phenyl LC column with an ammonium acetate, glacial acetic acid, acetonitrile, and water mobile phase. Eight blind duplicates of dietary supplements or botanicals were analyzed by 10 collaborators. Included was a negative control, ephedra nevadensis, and negative controls fortified at 2 different levels with each of the 6 ephedrine-type alkaloids. The spike levels were approximately 100 and 1000 microg/g for NE, 100 and 600 microg/g for NPE, 6500 and 65000 microg/g for E, 1000 and 10 000 microg/g for PE, 300 and 3000 microg/g for ME, and 100 and 1000 microg/g for MPE. On the basis of the accuracy and precision results for this interlaboratory study, it is recommended that this method be adopted Official First Action for the determination of 6 different individual ephedrine-type alkaloids in dietary supplements and botanicals.  相似文献   

2.
李红霞  丁明玉  吕琨  郁鉴源 《色谱》2001,19(2):161-163
 用RP HPLC分离测定了麻黄及其制剂中的麻黄类生物碱及川芎嗪。采用色谱柱Nova Pak C18(15 0mm×3.9mmi.d .) ,二极管阵列检测器 (DAD)。测定麻黄类生物碱时 ,以甲醇 0 .0 2mol/LKH2 PO4 乙酸 三乙胺 (体积比为 4∶96∶0 .2∶0 .0 1)为流动相 ,在 2 10nm波长下检测 ;测定川芎嗪时 ,以甲醇 水 乙酸 (体积比为 35∶6 5∶0 .5 )为流动相 ,在 2 90nm波长下检测。分别测定了麻黄原药材、中成药 (小儿清肺丸、鹭鸶咳丸 )中麻黄碱、伪麻黄碱、去甲基麻黄碱、去甲基伪麻黄碱和川芎嗪的含量。  相似文献   

3.
A method for the simultaneous determination of amphetamines and ketamines (ketamine, norketamine and dehydronorketamine) in urine samples by gas chromatography/mass spectrometry was developed and validated. Urine samples were extracted with organic solvent and derivatized with trifluoroacetic anhydride (TFAA). The limits of detection and limits of quantification for each analyte were lower than 19 and 30 ng/mL, respectively. Within-day and between-day precisions were within 0.5% and 10.6%, respectively. Biases for three levels of control samples were within -10.6% and +7.8%. The concentration of dehydronorketamine was greater than those of ketamine or norketamine in 19 of 35 ketamine-positive samples. A group of 110 human urine samples previously determined to contain at least one of the target analytes was analyzed using the new method, and excellent agreement was observed with previous results.  相似文献   

4.
《Microchemical Journal》2004,78(1):71-76
Thiamine (vitamin B1) was determined in human serum and urine by HPLC with fluorimetric detection of its oxidation product, thiochrome. The samples were injected directly into the chromatographic system without previous treatment or dilution. A column filled with an ultra-high molecular weight surface-modified polyethylene (PE) was able to separate matrix components from analyte and also to allow a good chromatographic resolution of thiamine. The interaction of thiamine, thiocrome and both matrices (serum and urine) with PE was studied off- and on-line to determine the optimal procedure for vitamin B1 determination. When carried off-line, matrix adsorption yield was 49 mg serum proteins/g polymer and components of 1000 μl urine/g polymer. In an on-line arrangement, the yield dropped to 10 mg/g and 150 μl/g, respectively. The matrix/analyte separation was carried out in an on-line procedure on a 50×4.6-mm, 25-μm PE column, using a water-sodium phosphate-methanol gradient elution. Part of the matrix was eluted within the first 2 min and thiamine after 3.8 min. The rest of the matrix retained on the column was eluted after thiamine at the last step of the gradient elution. Analysis time was 12 min. The within-day and day-to-day precision gave C.V. varying from 3.6% to 14.5% and recoveries from spiked samples were in the range of 84.8-98.8%.  相似文献   

5.
CE methods with capacitively coupled contactless conductivity detection (C4D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE‐C4D system. The chiral selectors, carboxymethyl‐β‐cyclodextrin (CMBCD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DMBCD) and chiral crown ether (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid (18C6H4), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H4 was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3–5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE‐C4D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.  相似文献   

6.
An accurate and precise method is developed and evaluated for the detection and quantitation of 2-butoxyacetic acid (2-BAA), a metabolite and biomarker for human exposure to 2-butoxyethanol. The solvent 2-butoxyethanol (2-BE) is extensively used in various industrial and domestic applications, and it is a health concern owing to its toxicity. Sample preparation consists of liquid-liquid extraction (LLE) of urine, then esterification of 2-BAA to produce the ethyl ester analog. The gas chromatographic conditions utilize a dimethyl polysiloxane phase (HP-1) capillary column and a mass spectrometer (MS) for detection of the analyte. Validation of this method includes a recovery study using fortified urine samples, which demonstrated good accuracy and precision; recovery varied between 100% and 102% of theory, with relative standard deviations of replicate samples at 2.8% and less. The detection limit of this method ranges from 0.005 to 0.015 microg/mL equivalent level of 2-BAA in urine.  相似文献   

7.
Single quadrupole gas chromatography/mass spectrometry (GC/MS) has been widely used for isotopic analysis in metabolic investigations using stable isotopes as tracers. However, its inherent shortcomings prohibit it from broader use, including low isotopic precision and the need for chemical derivatization of the analyte. In order to improve isotopic detection power, liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry (LC/ESI-itMS2) has been evaluated for its isotopic precision and chemical sensitivity for the analysis of [13C]palmitoylcarnitine. Over the enrichment range of 0.4-10 MPE (molar % excess), the isotopic response of LC/ESI-itMS2 to [13C]palmitoylcarnitine was linear (r = 1.00) and the average isotopic precision (standard deviation, SD) was 0.11 MPE with an average coefficient of variation (CV) of 5.6%. At the lower end of isotopic enrichments (0.4-0.9 MPE), the isotopic precision was 0.05 MPE (CV = 8%). Routine analysis of rat skeletal muscle [13C4]palmitoylcarnitine demonstrated an isotopic precision of 0.03 MPE for gastrocnemius (n = 16) and of 0.02 MPE for tibialis anterior (n = 16). The high precision enabled the detection of a small (0.08 MPE) but significant (P = 0.01) difference in [13C4]palmitoylcarnitine enrichments between the two muscles, 0.51 MPE (CV = 5.8%) and 0.43 MPE (CV = 4.6%), respectively. Therefore, the system demonstrated an isotopic lower detection limit (LDL) of < or =0.1 MPE (2 x SD) that has been impossible previously with other organic mass spectrometry instruments. LC/ESI-itMS2 systems have the potential to advance metabolic investigations using stable isotopes to a new level by significantly increasing the isotopic solving power.  相似文献   

8.
An assay of norepinephrine (NE), epinephrine (E), dopamine (DA), normetanephrine (NE) and metanephrine (MN) based on high-performance liquid chromatography (HPLC) in combination with atmospheric pressure chemical ionization mass spectrometry (APcI-MS) is described. The catecholamines and metanephrines were extracted from urine and aqueous samples using Bio-Rex 70 cation-exchange resin and subjected to analysis by HPLC/APcI-MS. The separation was performed on a C18 column in 50 mM ammonium formate buffer, pH 3.0, using a flow rate of 0.8 mL/min. Acetonitrile was added post-column at a flow rate of 0.2 mL/min via a post-column addition tee. The total analysis time was 6.5 min. The quantitative analysis was performed using 3,4-dihydroxybenzylamine (DHBA) as the internal standard (I.S.). Selected ion monitoring detection was applied: m/z 170 (for NE), 184 (for E and NM), 154 (for DA), 198 (for MN) and 140 (for DHBA, I.S.). The limits of quantitation were 5 ng/mL for NE, E and DA and 2.5 ng/mL for NM and MN. The recovery ranged from 75 to 83% for each analyte. The method was found to be simple and highly selective for the determination of catecholamines and metanephrines in the urine of patients suspected of pheochromocytoma.  相似文献   

9.
A capillary electrophoresis/mass spectrometry method for the simultaneous chiral analysis of enantiomers of methamphetamine (MA), amphetamine (AP), dimethylamphetamine (DMA), ephedrine (EP), norephedrine (NE) and methylephedrine (ME) in urine has been developed. The background electrolyte was 1 M formic acid (pH 1.7). Using 0.85 mM heptakis(2,6-diacethyl-6-sulfato)-beta-cyclodextrin as the chiral selector, the 12 enantiomers were completely separated within 25 min. The detection limits were 0.01 microg mL(-1) for the enantiomers of MA, AP, DMA, EP and ME, and 0.02 microg mL(-1) for the enantiomers of NE using selected ion monitoring. The reproducibilities of within-run (n = 4) for the migration times and peak areas of the standard mixture were under 0.58% and 7.83%, respectively. The calibration curves of the peak areas of the 12 enantiomers were linear in the range of 0.05 - 10 microg mL(-1). This method was applicable to the analysis of urine samples.  相似文献   

10.
This work presents the development of a novel procedure for the determination of trihalomethanes (THMs) in human urine samples based on: (1) pervaporation (PV) of analytes from urine samples as a convenient analyte isolation/enrichment technique; (2) direct aqueous injection of the extracts onto the column of a gas chromatograph equipped with an electron capture detector (DAI-GC-ECD). Basic parameters of the new PV-DAI-GC-ECD procedure were evaluated. The calibration curves were linear in the concentration range examined. Intermediate precision of the procedure was good, at the same level of about 20% for all analytes. The method detection limits were below 0.10?µg?L?1 for all analytes. The enrichment factors did not differ significantly for water and urine samples, indicating little or no matrix effects.  相似文献   

11.
A novel, sensitive and specific method for the quantification of alpha-tocopherol in two infant foods (milk and cereals) using liquid chromatography on-line with positive atmospheric pressure chemical ionisation mass spectrometry detection (LC/APCI-MS) has been developed. The samples were first saponified in order to eliminate fats and to transform tocopherol esters into free tocopherol, followed up by a liquid-liquid extraction of the analyte in petroleum benzine/diisopropyl ether (75:25, v/v) prior to injection onto the LC system. For the quantification, deuterium-labelled tocopherol was used as internal standard and the samples were monitored in selected ion monitoring (SIM) mode. Calibration curves between 1-40 microg/mL of alpha-tocopherol showed a good linear correlation (r(2) = 0.99994), and the detection limit was determined to be 2.5 ng/mL. The within-day and between-day precision were determined for several dietetic infant formulae and certified reference samples, and found to be below 3.5%. The accuracy determined on a Nestlé reference sample (milk powder) was calculated to be 115.2 +/- 1.2%, which confirms the robustness of the proposed method. This study shows that single quadrupole LC/MS can be applied for the quantification of vitamins in food and the method offers better sensitivity and selectivity than traditional method such as LC-UV. This would simplify the preparation of the food samples and consequently enhance the vitamin analysis throughput in the food area.  相似文献   

12.
A method was developed for the rapid separation of catecholamines by nonaqueous microchip electrophoresis (NAMCE) with LIF detection, A homemade pump‐free negative pressure sampling device was used for rapid bias‐free sampling in NAMCE, the injection time was 0.5 s and the electrophoresis separation conditions were optimized. Under the optimized conditions, the samples were separated completely in <1 min. The average migration times of the epinephrine (E), dopamine (DA), and norepinephrine (NE) were 34.26, 43.81, and 50.07 s, with an RSD of 1.05, 1.26, and 0.89% (n = 7), respectively. The linearity of the method ranged from 0.0125 to 2.0 mg/L for E and 0.025~4.0 mg/L for DA and NE, with correlation coefficients ranging between 0.9978 and 0.9986. The detection limits of E, DA, and NE were 2.5, 5.0, and 5.0 μg/L, respectively. The recoveries of E, DA, and NE in spiked urine samples were between 86 and 103%, with RSDs of 4.5~6.8% (n = 5). The proposed NAMCE with LIF detection combined with a pump‐free negative pressure sampling device is a simple, inexpensive, energy efficient, miniaturized system that can be successfully applied for the determination of catecholamines in urine samples.  相似文献   

13.
An HPLC method was developed and validated for the determination of ethacridine lactate in human urine. Solid-phase extraction cartridges were used to extract urine samples. Separation was carried out on a C(18) column maintained at 30 degrees C with methanol-0.05% sodium dodecylsulfonate (70:30, v/v, pH 3) as mobile phase at a flow rate of 1.0 mL/min. Detection was at UV 272 nm. The calibration curve was linear in the concentration range of 4-4000 ng/mL, with linear correlation coefficient r equal to 0.9998. The limit of detection for the assay was 1.1 ng/mL. The within-day accuracy ranged from 94.8 to 101.6% and precision from 2.3 to 5.4%. The between-day accuracy ranged from 96.8 to 102.6% and precision from 4.0 to 5.3%. The absolute recovery was 95.4-101.2%. Urine samples were stable for at least 15 days if stored in the dark at -20 degrees C. This simple and accurate method allows the sensitive determination of ethacridine lactate in human urine. It was successfully applied to assess the urine level of ethacridine lactate in women received intra-amniotic injection.  相似文献   

14.
A specific and sensitive method based on tandem mass spectrometry with on-line high-performance liquid chromatography using atmospheric pressure chemical ionisation (LC–APCI-MS–MS) for the quantitation of anabolic hormone residues (17β-19-nortestosterone, 17β-testosterone and progesterone) and their major metabolites (17-19-nortestosterone and 17-testosterone) in bovine serum and urine is reported. [2H2]17β-Testosterone was used as internal standard. The analytes were extracted from urine (following enzymatic hydrolysis) and serum samples by liquid–liquid extraction and purified by C18 solid-phase extraction. Ionisation was performed in a heated nebulizer interface operating in the positive ion mode, where only the protonated molecule, [M+H]+, was generated for each analyte. This served as precursor ion for collision-induced dissociation and two diagnostic product ions for each analyte were identified for the unambiguous hormone confirmation by selected reaction monitoring LC–MS–MS. The overall inter-day precision (relative standard deviation) ranged from 6.37 to 2.10% and from 6.25 to 2.01%, for the bovine serum and urine samples, respectively, while the inter-day accuracy (relative error) ranged from −5.90 to −3.18% and from −6.40 to −2.97%, for the bovine serum and urine samples, respectively. The limit of quantitation of the method was 0.1 ng/ml for all the hormones in bovine serum and urine. On account of its high sensitivity and specificity the method has been successfully used to confirm illegal hormone administration for regulatory purposes.  相似文献   

15.
Capillary electrophoresis and liquid-phase microextraction using porous polypropylene hollow fibers were employed for the enantioselective analyses of mirtazapine and its metabolites demethylmirtazapine and 8-hydroxymirtazapine in human urine. Before the extraction, urine samples (1.0 mL) were submitted to enzymatic hydrolysis at 37 degrees C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid, the pH was adjusted to 8 with 0.5 mol/L phosphate buffer solution (pH 11) and 15% sodium chloride was further added. The analytes were transferred from the aqueous donor phase, through n-hexyl ether (organic solvent immobilized in the fiber), into 0.01 moL/L acetic acid solution (acceptor phase). The electrophoretic analyses were carried out in 50 mmol/L phosphate buffer solution (pH 2.5) containing 0.55% w/v carboxymethyl-beta-cyclodextrin. The method was linear over the concentration range of 62.5-2500 ng/mL for each mirtazapine and 8-hydroxymirtazapine enantiomer and 62.5-1250 ng/mL for each demethylmirtazapine enantiomer. The quantification limit was 62.5 ng/mL for all the enantiomers. Within-day and between-day assay precision and accuracy were lower than 15% for all the enantiomers. Finally, the method proved to be suitable for pharmacokinetic studies.  相似文献   

16.
Urinary free cortisol and urinary free cortisone are decisive markers for the diagnosis of syndromes related to the dysfunction of the adrenal gland or to evaluate certain enzymatic disorders. Here, we present a new method, designed for routine laboratory use, which enables quick determination of these analytes with minor sample workup. Turbulent flow chromatography shortens sample preparation, and connection to a fused-core particle-packed column (rugged amide-embedded C18 phase) permits a rapid and effective separation of the analytes, as well as additional separation from other related and isobaric compounds present in urine. Urinary isobaric compounds were successfully identified. The method requires only 100 μl of urine supernatant per sample. The total time between injections is 9.5 min. The solvents used for both turbulent and analytical chromatography are water and methanol, and the relatively low flows needed during the method resulted in an extended life of the columns. Linearity showed a R 2?>?0.994. Limit of detection and limit of quantification are 0.5 and 1.0 ng/ml for cortisone and 1.0 and 2.0 ng/ml for cortisol. Recoveries ranged from 99.7 to 109.1 % for cortisone and from 98.7 to 102.9 % for cortisol. Accuracy values (relative errors) for intra- and inter-assay experiments were always below 8 %, whereas precision (percent CV) ranged from 3.7 to 10.7 %. No matrix effects were detected during the validation process. The reproducibility for each analyte’s retention time was excellent, with a coefficient of variation always below 0.2 %. The final validation step included the study of urine samples from healthy children and from children previously diagnosed with corticoidal disorders. The high selectivity achieved enables quick data handling.  相似文献   

17.
Summary This paper describes a high-performance liquid chromatographic (HPLC) assay method for the determination of trichlormethiazide (TCM) in human plasma and urine. After extraction and separation on an ODS column TCM from plasma was detected by oxidation in an electrochemical detector (ECD) by a porous graphite electrode. The sensitivity was better than HPLC with UV detection, enabling the determination of 2 ng ml–1 TCM in human plasma. This method also allows determination of TCM at higher concentrations by exchanging the UV for the electrochemical detector. To study the pharmacokinetics, TCM in plasma and urine was assayed with coefficients of variation in the range 2–3%. The method has the advantages of high sensitivity for plasma assay and high precision with a simple procedure for both plasma and urine samples. Small samples of 0.5 ml plasma per assay also reduced the total volume of plasma needed.  相似文献   

18.
A simple and sensitive HPLC method was developed and validated for the determination of four frequently prescribed 1,4-benzodiazepines: alprazolam (ALP), bromazepam (BRZ), diazepam (DZP), and flunitrazepam (FNZ). Separation was achieved on an Inertsil C8 analytical (250 mm x 4 mm, 5 microm) column, after selective extraction of benzodiazepine drugs from biological matrices by means of SPE. Isocratic elution was performed with a mobile phase consisting of CH3COONH4, 0.05 M CH3OH, and CH3CN (33:57:10 by volume). Quantification was performed at 240 nm with mefenamic acid (6 ng/microL) as the internal standard. DSC-18 Supelco cartridges provided high absolute recoveries (81-115%). The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 8) and between-day precision (n = 8) revealed RSD <12%. Recoveries from biological samples ranged from 81.2 to 115%. The detection limit of the method was calculated as 3.3-10.2 ng in blood plasma and 2.6-12.6 ng in urine for 20 microL injection volume. The method was applied to spiked biological matrices. Moreover, the method was applied to real samples of urine after an oral administration.  相似文献   

19.
A new spectrofluorimetric method for the simultaneous determination of canrenone and spironolactone in urine is proposed. The method is based on the different rates at which the two analytes react with hot sulfuric acid to form a trienone. The kinetic spectrofluorimetric data are processed by partial least-squares regression. The effects of sulfuric acid concentration and temperature on the system under study were also evaluated and the optimum values for carring out the reaction were 50% and 50 degrees C, respectively. The method was checked by analyzing urine samples that they contained both diuretics. The accuracy and the precision of the method were tested. The relative standard errors in the quantification of each analyte in all tested samples were 3.69 and 3.59%. The proposed method was validated by comparison with a high performance liquid chromatographic method for urine samples.  相似文献   

20.
The effect of coeluting matrix compounds on the quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry has been examined. During the method development stage of this assay, plasma samples spiked with the analyte at 100 pg/mL were extracted using three different procedures: a hexane liquid-liquid extraction, an ethyl acetate back-extraction, and a solid phase extraction. Ion intensity of the analyte was found to be related inversely to the percent ionization of coeluting matrix components as evidenced by full scan spectra. The ethyl acetate back-extraction, which contained the fewest coeluting components, resulted in the highest ion intensity for the analyte. An assay comparison was done by using the liquid-liquid hexane and the ethyl acetate back-extractions for sample preparation. Replicate 1-mL samples (n=5) at 11 concentrations from 5 to 2000 pg/mL were extracted and analyzed. The results for the ethyl acetate back-extracted samples were acceptable from 2000 to 5 pg/mL with accuracy ranging from ?11.6 to 2.61% of the nominal concentrations. In contrast, the hexane liquid-liquid method had poor accuracy and precision below 20 pg/mL. The difference is explained by suppression of analyte ion intensity. These results are consistent with the current theory of electrospray ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号