首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Peclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Raut [14].  相似文献   

2.
The rotational flow of viscoplastic fluids between concentric cylinders is examined while dissipation due to viscous effects through the energy balance. The viscosity of fluid is simultaneously dependent on shear rate and temperature. Exponential dependence of viscosity on temperature is modeled through Nahme law, and the shear dependency is modeled according to the Carreau equation. Hydrodynamically, stick boundary conditions are applied, and thermally, both constant temperature and constant heat flux on the exterior of cylinders are considered. The governing motion and energy balance equations are coupled adding complexity to the already highly correlated set of differential equations. Introduction of Nahme number has resulted in a nonlinear base flow between the cylinders. As well, the condition of constant heat flux has moved the point of maximum temperature toward the inner cylinder. Taking viscous heating into account, the effects of parameters such as Nahme and Brinkman numbers, material time and pseudoplasticity constant on the stability of the flow are investigated. Moreover, the study shows that the total entropy generation number decreases as the fluid elasticity increases. It, however, increases with increasing Nahme and Brinkman numbers.  相似文献   

3.
Various cross sectional duct geometries were compared from the point of view of entropy generation and pumping power requirement in order to determine the possible optimum duct geometry which minimizes the exergetic losses within the range of laminar flow conditions and constant wall temperature. Duct geometries used are; circular, square, equilateral triangle, rectangle with aspect ratio 1/2 and sinusoidal with aspect ratio . It is shown that the optimum duct geometry for constant thermophysical properties depends on the Reynolds number, however, the circular duct geometry is found to be the favorable one especially when the frictional contribution of entropy generation becomes dominant. Triangular and rectangular duct geometries are in general the worst choices for both entropy generation and pumping power requirement. Received on 17 June 1997  相似文献   

4.
Heat transfer effects of variable viscosity and viscous dissipation for heated developing laminar flows in circular tubes have been investigated. Three studies are reported covering a comprehensive range of input data for the case of constant wall heat flux. Initially the program was used to predict the effect on heat transfer of temperature-dependent viscosity via a general temperature power relation. In addition, predictions were made for nine particular fluids covering a range of Prandtl numbers from 0.025 to 12 500, and a range of Brinkman numbers from 1.8 × 10?10 to 6.8 × 103. A more detailed study was made for two particular oils covering a range of practical interest. For the liquids considered their viscosity temperature-dependence resulted in enhancement of heat transfer, whereas for fluids with a Prandtl number <200 the effect of viscous dissipation was negligible, and for fluids of a Brinkman number > × 10?2 the outcome was a reduction of heat transfer. A numerical instability problem occurred for situations of very high viscous dissipation which limited the length of duct that could be examined.  相似文献   

5.
Laminar free jet flow finds wide application in industry. Although considerable research studies were carried out in the past, but the irreversibility associated with the flow field due to heat transfer and viscous dissipation needs further investigation. In the present study, laminar free jet is considered and volumetric entropy generation in the flow field is computed. The normalized entropy ratio (entropy ratio generated in one-fourth of the jet length to total entropy generation), irreversibility, and the Merit number are determined for different velocity profiles leaving the nozzle. It is found that the uniform velocity profile results in less entropy generation due to viscous dissipation as compared to its counterpart corresponding to triangular velocity profile; however, the entropy generation due to heat transfer increases for the uniform profile.  相似文献   

6.
Entropy generation for hydrodynamically and thermally developing laminar flow in a circular duct at constant wall temperature is investigated. Optimum temperature difference between fluid inlet temperature and wall temperature is determined for minimum entropy generation rate. An equation for optimum temperature difference at minimum entropy generation rate is given. It is seen that the optimum dimensionless temperature difference is a finite value for a duct length approaching zero for low temperature differences. It is possible to calculate the optimum pressure loss for given wall and inlet fluid temperature differences and corresponding optimum dimensions of a circular duct can be determined with these results. An example for the dimensioning of an air-conditioning heat exchanger tube for given wall and air inlet temperatures and heat transferred is presented.  相似文献   

7.
Entropy generation in a circular pipe is analyzed numerically. A two-dimensional solution for the velocity ant temperature profiles is obtained considering temperature dependent thenmophysical properties. Uniform wall heat flux case is considered as the thermal boundary condition. The distribution of the entropy generation rate is investigated throughout the volume of the fluid as it flows through the pipe. Engine oil is selected as the working fluid. In addition, ethylene glycol and air are used in a parametric study. The total entropy generation rate is calculated by integration over the various cross-sections as well as over the entire volume. The results are compared with those obtained for the constant viscosity case. A considerable discrepancy is found between the two cases since the viscosity of these fluids is highly sensitive to the temperature variation.  相似文献   

8.
The entropy generation and heat transfer characteristics of magnetohydrodynamic(MHD) third-grade fluid flow through a vertical porous microchannel with a convective boundary condition are analyzed. Entropy generation due to flow of MHD non-Newtonian third-grade fluid within a microchannel and temperature-dependent viscosity is studied using the entropy generation rate and Vogel's model. The equations describing flow and heat transport along with boundary conditions are first made dimensionless using proper non-dimensional transformations and then solved numerically via the finite element method(FEM). An appropriate comparison is made with the previously published results in the literature as a limiting case of the considered problem.The comparison confirms excellent agreement. The effects of the Grashof number, the Hartmann number, the Biot number, the exponential space-and thermal-dependent heat source(ESHS/THS) parameters, and the viscous dissipation parameter on the temperature and velocity are studied and presented graphically. The entropy generation and the Bejan number are also calculated. From the comprehensive parametric study, it is recognized that the production of entropy can be improved with convective heating and viscous dissipation aspects. It is also found that the ESHS aspect dominates the THS aspect.  相似文献   

9.
Laminar forced convection flow of a liquid in the fully developed region of a circular duct with isothermal wall is analyzed. The effects of viscous dissipation as well as of temperature dependent viscosity are taken into account. The coupled momentum and energy equations are solved analytically by means of a power series method. Then, reference is made to the Poiseuille model for the temperature change of viscosity. For a fixed value of the axial pressure gradient along the duct, dual solutions are found for the velocity and temperature fields. Although dual solutions correspond to the same value of the axial pressure gradient, they lead in general to different values of the average fluid velocity, of the average fluid temperature and of the wall heat flux. It is shown that, for a given fluid and for a fixed duct radius, the absolute value of the axial pressure gradient has an upper bound above which no steady laminar solution can exist.  相似文献   

10.
Similarity solutions are proposed for the analysis of free convection flow over a non-isothermal body of arbitrary shape embedded in porous media in the presence of internal heat generation. The porous medium is saturated with non-Newtonian power law fluid. The effect of temperature dependent viscosity on heat transfer rates is investigated. The linearized version of the Arrhenius law for temperature dependent viscosity is considered and it is shown that the heat transferred is more for a less viscous fluid.  相似文献   

11.
 A numerical analysis of natural convection heat transfer and entropy generation from an array of vertical fins, standing on a horizontal duct, with turbulent fluid flow inside, has been carried out. The analysis takes into account the variation of base temperature along the duct, traditionally ignored by most studies on such problems. One-dimensional fin equation is solved using a second order finite difference scheme for each of the fins in the system and this, in conjunction with the use of turbulent flow correlations for duct, is used to obtain the temperature distribution along the duct. The influence of the geometric and thermal parameters, which are normally employed in the design of a thermal system, has been studied. Correlations are developed for (i) the total heat transfer rate per unit mass of the fin system (ii) total entropy generation rate and (iii) fin height, as a function of the geometric parameters of the fin system. Optimal dimensions of the fin system for (i) maximum heat transfer rate per unit mass and (ii) minimum total entropy generation rate are obtained using Genetic Algorithm. As expected, these optima do not match. An approach to a `holistic' design that takes into account both these criteria has also been presented. Received on 22 February 2001 / Published online: 29 November 2001  相似文献   

12.
 Entropy generation due to laminar forced convection heat transfer from an isothermal horizontal cylinder covered with an orthotropic porous layer was studied numerically. The study covered a wide range of Reynolds number and for different values of porous layer thickness, radial resistance, and tangential resistance. Increasing either or both of the porous layer thickness or resistance reduced the total entropy generation. The relative contribution of the thermal and viscous components to the total entropy generation depends on the Reynolds number and the cylinder diameter. The results can be used to asses the impact of adding a porous layer on the thermodynamic efficiency of the heat transfer from the cylinder. Received on 13 November 2000  相似文献   

13.
Entropy generation in the flow field subjected to a porous block situated in a vertical channel is examined. The effects of channel inlet port height (vertical height between channel inlet port and the block center), porosity, and block aspect ratio on the entropy generation rate due to fluid friction and heat transfer in the fluid are examined. The governing equations of flow, heat transfer, and entropy are solved numerically using a control volume approach. Air is used as the flowing fluid in the channel. A uniform heat flux is considered in the block and natural convection is accommodated in the analysis. It is found that entropy generation rate due to fluid friction increases with increasing inlet port height, while this increase becomes gradual for entropy generation rate due to heat transfer for the inlet port height exceeding 0.03 m. The porosity lowers entropy generation rate due to fluid friction and heat transfer. The effect of block aspect ratio on entropy generation rate is notable; in which case, entropy generation rate increases for the block aspect ratio of 1:2.  相似文献   

14.
An asymptotically valid analytical solution is presented of the equations governing high Graetz number, high Pearson number, low Nahme number flows of power-law fluids in ducts with heated walls. Thus the flows are developing and the imposed difference between the wall temperature and the entry temperature of the fluid is sufficiently large to cause significant viscosity variations, but temperature differences due to heat generation by viscous dissipation are not. Three different duct geometries are considered: channels, pipes and discs. Estimates are made of the pressure drop, maximum temperature and flow-average temperature rise for flows in each of the geometries.  相似文献   

15.
A system of balance laws for relativistic m.h.d, with finite eIectrical conductivity, heat flux and viscosity is proposed, starting from the properties of the systems of conservation laws compatible with a supplementary balance law (entropy balance). Adopting a two-fluid scheme the plasma is treated as a mixture of a neutral fluid and a charged fluid. Following the approach ofextended thermodynamics heat flux, viscous stress and electric current density are considered as new field variables contributing to non equilibrium entropy density and flux.  相似文献   

16.
In the present study, fully developed laminar flow and heat transfer in a helically coiled tube with uniform wall temperature have been investigated analytically. Expressions involving relevant variables for entropy generation rate contributed to heat transfer and friction loss, and total entropy generation rate have been derived. The effect of various flow and coil parameters like Reynolds number, curvature ratio, coil pitch, etc. on the entropy generation rate has been studied for two fluids- air and water. The results of the present study have been compared to the corresponding entropy generation values of straight pipe. Investigating the results, some optimum values for Reynolds number have been proposed and compared with the optimum Reynolds numbers of laminar flow inside a coiled tube subjected to constant heat flux boundary condition.  相似文献   

17.
The Stokes approximation is used to describe the stationary motion of a heated hydrosol spheroidal particle in a viscous incompressible liquid in which internal, uniformly distributed heat sources (sinks) of constant capacity act. It was assumed that the average particle surface temperature could differ significantly from the temperature of the ambient liquid. An analytical expression for the hydrodynamic force acting on the uniformly heated spheroidal particle was obtained by solving hydrodynamic equations with the temperature dependence of the viscosity represented as an exponential power series.  相似文献   

18.
The flow of fluid-solid mixtures in a pipe can be treated as non-Newtonian fluids of third grade. Depending upon the fluid viscosity, entropy generation in the flow system varies. In the present study, flow of third grade fluid in a pipe is considered. The Vogel model is introduced to account for the temperature-dependent viscosity. Entropy generation due to fluid friction and heat transfer in the flow system is formulated. The influence of viscosity parameters A and B on the entropy generation number is investigated. It is found that increasing viscosity parameter A reduces the entropy generation number and opposite is true for increasing viscosity parameter B.  相似文献   

19.
The laminar forced convection in a circular duct is investigated in the case of a sinusoidal axial variation of the wall heat flux. The axial heat conduction in the fluid is neglected, while the effect of viscous dissipation is taken into account. The heat transfer in the thermally developed region, where the temperature is the sum of a linear function and a periodic function of the axial coordinate, is analysed. Both the temperature field and the local Nusselt number are evaluated analytically. Comparisons with the solution in the absence of viscous heating are performed. It is shown that the effect of viscous dissipation on the temperature field may be relevant especially in the case of a sinusoidal wall heat flux distribution with a vanishing mean value. Received on 24 July 1998  相似文献   

20.
对管道内充分发展对流传热过程的有效能损失进行了分析.根据定型流状态下定热流与定壁温换热条件的特点,经代数推演,得到了这两种条件下的表征换热状态、流动功耗以及黏性变化的无量纲形式的有效能损失关系式,适用于不同截面形状的管道内的层流与湍流工况下的有效能分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号