首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
研究了丙烯腈/苯乙烯(AN/St)悬浮共聚体系中AN在水/油两相间的分配及其对AN/St共聚物组成的影响.结果表明,AN分配于水/油两相间,使油相AN的含量低于相同单体配料比的本体聚合,导致生成的AN/St共聚物组成偏离本体共聚.为了准确预测进而控制AN/St悬浮共聚物的组成,提出了在考虑AN相分配的基础上计算AN/St悬浮共聚物组成的模型.计算结果与实验值一致,计算中用到的油相实际竞聚率与本体聚合相同,但该悬浮聚合的表观竞聚率随水/油比的变化而发生较大改变.  相似文献   

2.
偏氯乙烯-氯乙烯悬浮共聚物的结晶与熔融性能   总被引:5,自引:0,他引:5  
研究了聚合温度、共聚物组成、低分子助剂用量等对偏氯乙烯 (VDC) 氯乙烯 (VC)悬浮共聚树脂的结晶度、熔融峰温度的影响 ,并用Florry的聚合物熔点降低理论预测共聚树脂熔点随共聚组成、低分子助剂用量的变化规律 ,为VDC VC悬浮共聚树脂的合成工艺条件和加工性能的改善提供理论基础 .  相似文献   

3.
通过比较在大水油比下的甲基丙烯酸甲酯 (MMA)悬浮均聚的实验数据以及本体聚合实验结果 ,发现单体的水溶性对其聚合动力学有影响 ,不能用本体聚合动力学代替其悬浮聚合动力学 .为了能更好了解单体的水溶性对其悬浮聚合动力学的影响以及影响动力学的原因 ,在MMA本体聚合动力学模型基础上 ,进一步提出 3个假设 :扣除溶于水相部分的单体量、增长和终止速率参数降低、少部分的油溶性引发剂被带到水相中 ,得到改进的悬浮聚合动力学模型 .运用该模型能很好预测水油比、聚合温度、引发剂浓度等对MMA悬浮聚合动力学的影响 ,且与实验数据能较好吻合  相似文献   

4.
丙烯腈(AN)—苯乙烯(St)与聚丙烯(PP)非均相接枝共聚,得杨梅形树脂。研究了AN/St摩尔比对接枝聚合的影响,发现苯乙烯相对含量增大时,非接枝物产量增加,接枝率和接枝效率相应下降。从接枝物的C、H、N分析可计算出聚丙烯、丙烯腈和苯乙烯的组成比例。此外,用二乙烯基苯(DVB)作交联剂,制备了PP-g-(AN-co-St-co-DVB)接枝共聚物—交联型薄壳树脂,交联剂的存在使单体转化率和接枝效率高达100%。  相似文献   

5.
采用递推方法成功地预测了乙烯基单体/N-苯基马来酰亚胺(PMI)共聚物组成随转化率的变化.选择共聚单体种类和用量,控制和优化共聚物组成.针对氯乙烯(VC)/PMI/丙烯腈(AN)三元悬浮共聚合特殊体系的聚合特点和工艺,得到该三元体系的单体选择范围.  相似文献   

6.
运用循环伏安法(CV)和原位紫外-可见光谱电化学法研究了苯胺(AN)和邻甲氧基苯胺(OMA)单独聚合及二者共聚的电化学过程。在1.0 mol/L HCl溶液中,AN和OMA单独聚合及二者共聚时不同的电化学行为表明AN和OMA之间产生了共聚作用。原位紫外-可见光谱的研究表明,在AN与OMA的共聚过程中,AN和OMA首先分别被氧化生成其阳离子自由基,然后,AN和OMA的阳离子自由基与溶液中的AN和OMA单体发生交互反应产生混合二聚物中间体,在紫外-可见吸收光谱中对应于440 nm处的吸收峰。进一步研究发现,AN和OMA的共聚过程与溶液中各单体的浓度比有关,当混合溶液中OMA的浓度较大时,会对共聚产生抑制作用。采用红外光谱技术对共聚物进行了表征并初步探讨了共聚机制。结果表明,在AN和OMA共聚过程中,OMA分子掺杂进入AN聚合物骨架。  相似文献   

7.
PEB/MMA-AN悬浮接枝共聚反应机理   总被引:1,自引:0,他引:1  
研究了乙烯-1-丁烯共聚物(PEB)弹性体与甲基丙烯酸甲酯(MMA)-丙烯腈(AN)悬浮接枝共聚反应行为及接枝共聚产物对SAN树脂增韧作用随反应时间的变化规律, 用凝胶渗透色谱法和傅里叶变换红外光谱法对接枝共聚产物进行了表征, 分析了接枝共聚反应机理, 推算了接枝链分子量. 结果表明, 体系首先发生链增长自由基向PEB转移终止形成非接枝共聚物(MANL)和PEB大分子自由基引发单体共聚形成接枝链(g-MAN)的反应, 接枝反应结束后体系发生明显的非接枝共聚形成非接枝共聚物(MANH)的反应; MANL的分子量低于g-MAN的分子量, 而g-MAN的分子量明显低于MANH的分子量; 在接枝共聚过程中发生已接枝和未接枝PEB断链并随机再接生成多嵌段共聚物的副反应; 在反应初期, 接枝链的AN单元含量接近于非接枝共聚物的AN单元含量, 在反应中后期前者远低于后者.  相似文献   

8.
根据文献查得的Q,e值,计算了三烯丙基异氰酸尿酯-二乙烯苯-醋酸乙烯三元共聚体系的竞聚率,预测了它们进行共聚的可能性。以甲苯和汽油为致孔剂,采用悬浮聚合的方法合成了此三元大孔共聚物,并研究了致孔剂用量,关联度等对共聚物孔性能的影响。实验发现,此共聚体系在适当条件下,可以制得很高比表面积的大孔共聚体,比表面积可高达1214m^2/g。对合成的共聚物又进行了醇解反应,得到了含羟基的共聚体。  相似文献   

9.
高透明抗冲聚苯乙烯树脂的辐射合成与性能表征   总被引:1,自引:0,他引:1  
以过氧化苯甲酰为引发剂,采用苯乙烯、甲基丙烯酸甲酯为共聚单体,先经本体自由基预聚合,再经γ辐照聚合法合成甲基丙烯酸甲酯 苯乙烯共聚物(MS)树脂.系统研究了吸收剂量和剂量率对MS树脂的分子量及其分布的影响,同时研究了树脂的化学结构、热性能、透过率和力学性能.结果表明,辐射合成的MS树脂是一种无规共聚物,具有很好的光学性能,较好的韧性和强度.  相似文献   

10.
运用原位紫外-可见吸收光谱法和红外光谱法分别研究了苯胺(AN)和邻-氨基苯磺酸(ABSA)在0.1mol/L HCIO4溶液中的单独聚合及共聚过程.结果表明,在AN和ABSA的共聚过程中,ABSA首先被氧化生成其阳离子自由基,然后ABSA阳离子自由基与继而生成的AN阳离子自由基和溶液中的AN及ABSA单体发生交互反应,...  相似文献   

11.
The effects of acrylonitrile (AN) water solubility on the limiting conversion and copolymer composition of the AN and AN/vinylidene chloride (VDC) suspension polymerization were investigated. It was found that AN dissolved in aqueous phase does not transfer back to oil phase in AN suspension homopolymerization but partially does in AN/VDC suspension copolymerization, and thus the limiting conversion is lowered and decreases with water/oil ratio increasing in both AN and AN/VDC suspension polymerization. For the continuous transport of AN in aqueous phase to oil phase during suspension polymerization, the composition distribution of AN/VDC copolymer prepared by suspension polymerization is narrower than that by bulk polymerization. The calculated composition of AN/VDC suspension copolymer with considering AN water solubility is consistent with the experimental data.  相似文献   

12.
衣康酸对聚丙烯腈原丝结构和性能的影响   总被引:7,自引:1,他引:7  
控制单体配比 ,采用丙烯腈 (AN)与衣康酸 (IA)自由基溶液共聚 ,以偶氮二异丁腈为引发剂在溶剂二甲基亚砜中合成了聚丙烯腈原丝纺丝溶液 ,并纺制了碳纤维前驱体聚丙烯腈原丝 .通过元素分析、IR、DSC、13 C NMR等手段 ,讨论了共聚单体IA对共聚反应及聚丙烯腈原丝结构和性能的影响 .共聚反应时 ,共聚单体IA的加入量控制在AN/IA =98/2 (W/W )较合适 .利用IR谱 ,可定量分析IA在共聚中的摩尔分数 .经13 C NMR分析 ,随着共聚单体IR在共聚物中的摩尔分数的增加 ,共聚物的全同规整度增加 ,达到一定值后又呈下降趋势 .共聚单体IA能在较低温度时引发聚丙烯腈原丝的氧化、环化放热反应 ,且能减缓放热效应 .  相似文献   

13.
丙烯腈与衣康酸在DMSO/H_2O中的聚合及聚合物性能表征   总被引:5,自引:0,他引:5  
采用丙烯腈 (AN)与衣康酸 (IA)为共聚单体 ,以偶氮二异丁腈为引发剂在混合介质二甲基亚砜 水(DMSO H2 O)中自由基沉淀共聚合 ,合成了高分子量的聚丙烯腈 .通过正交设计方法研究了聚合反应条件 ,如反应温度、单体浓度、混合介质DMSO H2 O配比等对聚合反应的转化率的影响 ,还重点探讨了混合介质DMSO H2 O配比对转化率和粘均分子量的影响 .采用DSC ,TG ,IR等手段研究了PAN均聚物及 (PAN co IA)的结构与性能 .研究结果表明 ,增加反应温度 ,降低单体浓度 ,降低喂料AN IA配比中IA的含量 ,均有利于提高聚合反应的转化率 .AN与IA共聚反应的转化率随着反应介质中DMSO含量的增加而降低 ,同时聚合物的粘均分子量也降低 .对于喂料AN IA配比中IA含量相同的P(AN co IA)共聚物 ,高分子量P(AN co IA)共聚物比常规低分子量的放热峰起始温度低 ,放热峰宽  相似文献   

14.
Experimental evidence is presented that describes the mechanism of formation of macroreticular styrene–divinylbenzene copolymers in which phase separation occurs during a suspension polymerization. The mode of formation of the macroreticular structure is described as a three-stage process in which each droplet of the organic phase behaves as an individual in a bulk polymerization that results in a bead of copolymer. Macroreticular structure formation is described by changes in copolymer swelling ratios, infrared absorption spectra of vinyl groups pendent to the polymeric matrices, surface area, total porosity, and pore-size distribution. The proposed mechanism of formation is also substantiated by electron micrographs of the copolymers during various stages of the copolymerization.  相似文献   

15.
The permeability coefficients of a series of copolymers of vinylidene chloride (VDC)with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer)to oxygen and carbon dioxide have been measured at 1.0 MPa and 30℃, while those towater vapor have been measured at 30℃ and 100% relative humidity All the copolymersare semicrystalline. VDC/MA copolymers have lower melting temperature compared withVDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higherthan that of VDC/acrylate copolymers with the same VDC content. The barrier propertyof the copolymers is predominantly controlled by crystallite, free volume fraction, andcohesive energy The permeability coefficients of VDC/MA copolymers to oxygen, carbondioxide, and water vapor were successfully correlated with the ratio of free volume tocohesive energy.  相似文献   

16.
The emulsion copolymerization of vinylidene chloride (VDC) with methyl-methacrylate(MMA) and acrylonitrile (AN) was carried out by batch, seeded batch and semicontinuous pro-cesses,respectively. Significant differences were found in the physical and mechanical propertiesof the latexes and films, depending on the methods of monomer feeding. The results both intheory and experiments demonstrated that the copolymer composition and the length of the VDC sequences in the copolymer could be controlled by the modes of monomer feeding process.  相似文献   

17.
氯乙烯/N-苯基马来酰亚胺共聚物组成控制和优化   总被引:7,自引:0,他引:7  
研究了氯乙烯 /N 苯基马来酰亚胺 (VC/PMI)共聚物组成随转化率的变化 ,体系中共聚物的累积组成偏差小于 0 0 5或 0 1的单体配比范围很小 ,采用加入第三单体丙烯腈 (AN)的方法进行改善 ,并以PMI在共聚物中的累积组成偏差作为控制参数 ,得到了PMI在共聚物中的累积组成偏差小于 0 0 5和 0 1的VC/PMIlAN较优的配比范围 .结合悬浮聚合工艺的特点 ,确定了VC/PMI/AN悬浮共聚的最佳单体配比范围为f1=0 72~ 0 84 ,f2 =0 0 2~ 0 0 4 ,f3 =0 1 2~ 0 2 4 .  相似文献   

18.
Evaporating droplets of volatile organic solvent containing amphiphilic block copolymers may undergo hydrodynamic instabilities that lead to dispersal of copolymer micelles into the surrounding aqueous phase. As for related phenomena in reactive polymer blends and oil/water/surfactant systems, this process has been ascribed to a nearly vanishing or transiently negative interfacial tension between the water and solvent phases induced by adsorption of copolymer to the interface. In this report, we investigate the influence of the choice of organic solvent and polymer composition for a series of polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers, by in situ micropipette tensiometry on evaporating emulsion drops. These measurements suggest that the sensitivity to the organic solvent chosen reflects both differences in the bare solvent/water interfacial tension as well as the propensity of the copolymer to aggregate within the organic phase. While instabilities coincident with an approach of the interfacial tension nearly to zero were observed only for copolymers with PEO content greater than 15 wt.%, beyond this point the interfacial behavior and critical concentration needed to trigger surface instability were found to depend only weakly on copolymer composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号