首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以含氟的二胺5,5’-(六氟异丙基)-二-(2-氨基苯酚)(6FHP)及二酐4, 4’-(六氟异丙基)-苯二酸酐(6FDA)或均苯四甲酸酐(PMDA)为单体,以分散红 1(DR1)为活性生色分子合成具有非线性光学特性的含氟聚酰亚胺,并采用溶胶-凝胶(Sol-Gel)法合成相应的聚酰亚胺/SiO2杂化材料.采用固态29 Si MAS NMR谱研究了含氟聚酰亚胺/SiO2杂化材料的交联结构,结果表明杂化材料中是以T3、Q3、Q4结构为主,说明在杂化材料中形成了交联网状结构.采用衰减全反射(ATR)测定了聚酰亚胺和杂化材料在832 nm处的电光系数,其值分别为 32、28、34和29 pm/V,结果表明具有较高的电光系数.  相似文献   

2.
以4,4'-对苯二甲酰二邻苯二甲酸酐(TDPA)为芳二酐单体,对苯二胺(PPD)为芳二胺单体,经低温溶液缩聚制得成膜性能优良的高相对分子质量聚酰胺酸(PAA),再经过热亚胺化制备双酮酐型聚酰亚胺(PI)薄膜。 采用傅里叶变换红外光谱仪(FT-IR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)、热重分析仪(TGA)、紫外-可见分光光度计(UV-Vis)及力学性能等技术手段表征了聚酰亚胺膜的结构和性能,考察了不同亚胺化温度对合成的双酮酐型聚酰亚胺膜性能的影响。 结果表明,经程序升温至320 ℃能使PAA热亚胺化基本趋于完成。 PI薄膜为部分有序聚集态结构,玻璃化转变温度(Tg)为298 ℃,具有优异的热性能,热失重温度(T5%)为523 ℃。 拉伸强度达到130 MPa,弹性模量为5.77 GPa。 PI薄膜紫外光透过截止波长为375 nm,在可见光区具有良好的透光性能及耐溶剂性能。  相似文献   

3.
吡啶桥联的聚酰亚胺的合成与性能研究   总被引:2,自引:0,他引:2  
以3,4-二甲基苯乙酮与3,5-双(三氟甲基)苯甲醛为原料,通过Chichibabin反应制备了吡啶桥联的四甲基化合物,该化合物再经氧化、脱水反应制备了主链含有吡啶环、侧链带有双三氟甲基取代苯侧基的新型含氟芳香族二酐单体,2,6双(3′,4′-二羧基苯基)-4-(3″-,5″-双三氟甲基苯基)吡啶二酐(6FDAPA).FT IR、NMR、质谱以及元素分析等测试结果表明,6FDAPA的结构与预期的相符.利用6FDAPA与另外一种不含氟的二酐单体2,6双(3′,4′二羧基苯基)4苯基吡啶二酐(DAPA)分别与含氟二胺单体,1,4双(2三氟甲基4氨基苯氧基)苯(6FAPB)通过两步热亚胺化法制备了两种聚酰亚胺(PI)薄膜.测试结果表明,6FDAPA6FAPB(PI2)与DAPA6FAPB(PI1)相比具有相近的耐热性能,玻璃化转变温度为280℃,起始热分解温度为580℃、700℃时的重量保持率64.5%.同时PI2具有更为优良的透光性,紫外可见光谱(UV Vis)测试表明,PI2与PI1薄膜在450nm处的透光率分别为85.7%与69.4%.  相似文献   

4.
以4,4′-二氨基二苯醚(ODA)和含芴大侧基的9,9-双(3-氟-4-氨基苯基)芴(FFDA)为二胺单体,4,4′-联苯醚二酐(ODPA)为二酐单体,经常温下溶液共缩聚反应得到含FFDA的聚酰胺酸(PAA)溶液,再经化学亚胺化得到无色透明聚酰亚胺(PI)薄膜。使用傅里叶红外光谱(FT-IR)、差示扫描量热(DSC)、热重分析(TGA)、X射线衍射(XRD)分析、紫外-可见分光光度计(UV-Vis)、万能材料试验机等对PI进行了结构及性能表征。结果表明:随着n(FFDA)∶n(ODPA)的投料比增加,PI的热性能和力学性能均相应提高,当该比例达到50%时,PI的可见光透过率达到85%,且室温下在常见极性溶剂中的溶解性较好。  相似文献   

5.
以四氯邻氨基苯甲酸和蒽经Diels-Alder反应得到1,2,3,4-四氯三蝶烯,再经硝化、还原得到2,6-二氨基-13,14,15,16-四氯三蝶烯二胺单体.该二胺与双酚A二酐(BPADA)、六氟二酐(6FDA)和3,3’,4,4’-二苯甲酮四羧酸二酐(BTDA)经两步法缩聚得到系列聚酰亚胺.对2,6-二氨基-13,14,15,16-四氯三蝶烯二胺单体进行了1H-NMR,13C-NMR,FTIR表征,对所合成聚酰亚胺进行了1H-NMR、FTIR结构表征及溶解性、热性能、特性粘度、BET等测试.结果表明,含四氯三蝶烯结构的聚酰亚胺具有优异的溶解性,能溶于DMAc、DMF、NMP、THF、吡啶、间甲酚等有机溶剂,其中基于双酚A二酐和六氟二酐的聚酰亚胺在室温下能溶于氯仿中.聚合物具有良好的热性能,在0~300℃之间没有发现其玻璃化转变温度以及10%的热失重温度均高于500℃.聚合物可形成颜色较浅的透明薄膜,其中基于双酚A二酐的聚酰亚胺薄膜为无色透明.基于六氟二酐的聚酰亚胺BET比表面积为370 m2/g,是一种新型多孔聚合物.  相似文献   

6.
一种高可溶、高光学透明含氟聚酰亚胺的合成与表征   总被引:1,自引:0,他引:1  
由自制芳香二胺单体9,9-双(3,5-二氟-4-胺基苯基)芴和商品化二酐单体4,4'-(六氟异丙基)双邻苯二甲酸酐经一步法高温缩聚制备了一种新型含氟聚酰亚胺.分别用FT-IR、1HNMR和19FNMR对所制聚酰亚胺结构进行了表征.结果证实其与所设计的结构完全一致,并且酰亚胺化反应完全.该含氟聚酰亚胺表现出高的溶解性:室温下在N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、氯仿、二氯甲烷、四氢呋喃等常规溶剂中的溶解度可达10wt%以上.由该聚酰亚胺溶液所制的薄膜无色透明,截断波长在315nm,400nm波长后的透光率在84%以上.此外该含氟聚酰亚胺还表现出良好的热学性能和机械性能:玻璃化转变温度在377℃,空气和氮气中10%热失重温度均在539℃以上;其薄膜的拉伸强度在70~80MPa,断裂伸长率在4%~8%,起始模量为2.6GPa.  相似文献   

7.
一种主链含光敏基团聚酰亚胺的合成与表征   总被引:1,自引:0,他引:1  
郭妙才  王晓工 《高分子学报》2008,(11):1113-1117
通过4,4′-二羟乙基查尔酮与1,2,4-苯三酸酐酰氯反应,得到了一种新型的主链含查尔酮的二酐单体,通过二酐和2,2-双(3(-氨基-4(-羟基苯基)六氟丙烷缩聚并高温亚胺化,得到了一种新型的主链含查尔酮,侧链含羟基的光敏聚酰亚胺,并通过1H-NMR、FTIR、GPC及热分析表征了得到的聚酰亚胺的结构和热性能.这种聚酰亚胺在极性溶剂中具有较好的溶解性,并具有较高的热稳定性,在紫外光照射下,能进行[2+2]的环加成反应.  相似文献   

8.
以乙酰氨基苯酚为原料,经过BrCF2CF2Br氟烷基化、Zn催化脱卤、热环化二聚,以及水解去保护,合成了一种含全氟环丁烷环的二胺单体1,2,3,3,4,4-六氟-1,2-双[4-(氨基)苯氧基]环丁烷.用该单体分别与酯环二酐双环[2·2·1]辛烷-2,3,5,6-四羧基2,3,5,6-二酐(BHDA)、芳香性二酐3,3′,4,4′-联苯四酸二酐(BPDA)和3,3′,4,4′-二苯酮四酸二酐(BTDA)通过“一步法”制备了3种新型含全氟环丁烷环聚酰亚胺.通过粘度测试、溶解性实验、FT-IR、热失重分析(TGA)和差热扫描量热(DSC)分析等手段,对所合成的聚酰亚胺的结构与性能进行了表征.结果显示该类聚酰亚胺可溶于大多数常用极性有机溶剂,热分解温度高于480℃,其中两种聚合物玻璃化温度低于150℃,表明含全氟环丁烷环聚酰亚胺具有良好的溶解性和可加工性.  相似文献   

9.
DDBT类可溶性聚酰亚胺的合成与性能研究   总被引:1,自引:0,他引:1  
由二甲基-5,5'-3,7-二苯并噻吩二胺(DDBT)和3,3',4,4'-二苯砚四羧酸二酐(DSDA)、2,2'-双(3,4-二羧酸)六氟丙烷二酐(……FDA)、均苯四羧酸二酐(PMDA)、联苯四羧酸二酐(BPDA)等多种二酐单体进行缩聚反应制备了新型可溶性聚酰亚胺。测定了其特性粘度为0.6-0.9dL/g;DDBT与DSDA、6FDA反应得到的聚酰亚胺在非质子强极性溶剂中具有良好的溶解性。用IR、热力学分析等手段对DDBT类聚酰亚胺进行了表征,并对可溶性DDBT-DSDA聚酰亚胺膜作了进一步的研究,推导出了苯在DDBT-DSDA聚酰亚胺膜中动态吸附初期的吸附方程。实验结果表明DDBT-DSDA聚酰亚胺膜对苯具有特殊的亲和力。  相似文献   

10.
以4,4-六氟异丙基邻苯二甲酸酐与4,4′-二氨基二苯醚为反应原料,合成了一种分子结构中包含双酰亚胺基元的二胺单体,将其与对苯二甲醛及三(2-氨基乙基)胺通过胺-醛缩合反应制备了一种分子主链包含动态亚胺键(—CH=N—)的热固性聚酰亚胺薄膜。该薄膜具有突出的耐热性及高的力学强度,其玻璃化转变温度及热分解温度分别高达224℃和385℃,拉伸强度大于90MPa,拉伸模量为2.16GPa,是目前报道的动态共价高分子的最高值。采用动态机械分析仪研究了该薄膜在不同温度下的应力松弛行为,并由此计算得到亚胺键在该聚酰亚胺骨架中发生可逆键交换反应的活化能为222.7kJ/mol。本文利用了伯胺对亚胺可逆键交换反应的"促进机制",实现了热固性聚酰亚胺薄膜在温和条件下的自修复。该设计思路可望拓展到其它动态共价高分子体系,有望为动态共价高分子的高性能化提供新的研究方向。  相似文献   

11.
本文成功制备了新型的1,5-二[4-(4-氨基苯氧基)]苯羰基-2,6-二甲氧基萘大体积单体,并且通过室温反应制得了具有一定分子量的含有酮醚萘结构的聚甲亚胺和聚酰亚胺。新型聚合物具有高Tg,高热稳定性,高模量,良好的溶解性能和成膜性。  相似文献   

12.
双吡唑亚胺镍/甲基铝氧烷催化降冰片烯的聚合   总被引:1,自引:1,他引:0  
合成了两种双吡唑亚胺镍配合物: 双-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.1)和双-4-甲氧基-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.2). 研究了Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯(NBE)单体聚合的催化性能, 考察了各种聚合条件, 如温度、Al/Ni摩尔比及催化剂浓度对降冰片烯的催化效率、单体转化率、聚合物分子量及分子量分布的影响. 研究结果表明, Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯聚合具有较高的催化效率, 可达到105 g PNBE/(mol Ni)数量级, 所得聚降冰片烯(PNBE)的重均分子量在105以上, 分子量分布指数在2左右. 聚合产物的1H NMR和FTIR谱分析结果表明, 该聚合反应是以单体的乙烯基加成聚合机理进行的.  相似文献   

13.
可溶性聚酰亚胺的制备及其在液晶显示器上的潜在应用   总被引:4,自引:0,他引:4  
以3,5-二硝基苯甲酰氯和4-羟基联苯为原料,合成了功能性二胺单体3,5-二氨基苯甲酸联苯酯(DABBE).用此单体与3,3′-二甲基-4,4′-二氨基二苯甲烷(DMMDA)、3,3′,4,4′-二苯醚四甲酸二酐(ODPA)共缩聚,采用低温缩聚-化学亚胺化的方法,通过调节共聚物组成制备了5种聚酰亚胺(PI).利用FT-IR、NMR、UV-Vis与DSC等手段对合成二胺单体及聚酰亚胺进行了结构表征和性能测试;研究了其溶解性能、透光性能、取向性能和耐热性能.结果表明,5种聚酰亚胺均可溶于NMP、DMF等极性溶剂;对液晶分子取向时的预倾角随DABBE的比例增加而增大,可达1.8°.但当DABBE的比例增加时,PI的分子量降低,将影响其成膜性能.此外,实验所得的PI透过率大于80%,玻璃化转变温度在220℃以上.  相似文献   

14.
合成了一种刚性芳香二胺单体3,3',5,5'-四甲基-4,4'-二胺基苯基甲苯(BDAP),与6-氨基苯基-2-氨基苯并咪唑(BIA)组成混合二胺,分别与4种商品化的二酐单体(均苯四酸二酐(PMDA)、联苯四酸二酐(BPDA)、二苯酮四酸二酐(BTDA)和二苯醚四酸二酐(ODPA))一步法缩聚合成了一系列可溶性聚酰亚胺.采用FTIR,1H-NMR,UV-Vis,DMA和TGA等测试方法对所制备的聚酰亚胺进行了表征.结果表明,所制备的聚酰亚胺具有良好的溶解性能,能够在NMP和DMAc等常规溶剂中溶解;耐热性及力学性能优良,玻璃化转变温度超过410℃,分解温度在500℃以上.  相似文献   

15.
有机可溶性含氟不对称聚酰胺酰亚胺的合成与性能   总被引:1,自引:0,他引:1  
采用不对称联苯二酐单体2,3,3′,4′-联苯四甲酸二酐(a-BPDA)与3-氨基-2,4,5-三氟苯甲酸(3FAB)反应制备了一种新型不对称二酸化合物2,3,3′,4′-联苯四甲酸-N,N′-双(3-羧基-2,5,6-三氟苯基)二酰亚胺 (a-BPFDI).以此两种酸为原料、N-甲基-2-吡咯烷酮(NMP)为溶剂、亚磷酸三苯酯(TPP)与吡啶为缩合剂、氯化钙为催化剂,通过Yamazaki-Higashi反应,直接与3种芳香族二胺单体反应制得一系列聚酰胺酰亚胺(PAI).研究表明:PAI材料在极性非质子性溶剂中具有优良的溶解性能,其薄膜的玻璃化转变温度超过250 ℃,氮气中起始热分解温度超过410 ℃.此外,PAI薄膜还具有良好的力学性能以及介电性能.厚度为10 μm左右的PAI薄膜在可见光区(400~700 nm)的透光率达到或超过80%.  相似文献   

16.
通过傅-克酰化反应得到1,4-双(4′-溴苯酰基)苯,以1,4-双(4′-溴苯酰基)苯和α,α′-双(4′-氨基苯基)-1,4-二异丙基苯为单体,通过钯催化的胺基化反应缩聚合成了含异丙基的聚亚胺酮(pr-PIK).再以pr-PIK和苯基锂为底物,通过亲核加成反应得到新型结构聚合物——含异丙基的聚醇胺(pr-PAI).聚合物结构通过FT-IR、1H NMR和元素分析表征,表征结果与目标产物吻合良好.pr-PIK和pr-PAI的热性能由DSC和TG测定,结果表明pr-PIK和pr-PAI具有良好的热稳定性,玻璃化温度大于150℃,热分解温度大于480℃.  相似文献   

17.
通过不同分子量的对-氨基苯甲酸酯封端的聚(四次亚甲基)醚和均苯甲甲酸二酐反应,合成了聚醚聚酰胺酸;然后以不同重量比将聚醚聚氨酯和聚醚聚酰胺酸溶液混合反应亚胺化,制备了一系列不同硬段含量的聚醚聚氨酯-聚醚聚酰亚胺合金。用傅立叶变换红外光谱、动态力学分析、示差扫描量热、广角X-衍射、应力应变试验等分析测试方法对合金进行了研究,结果表明聚醚聚氨酯-聚醚聚酰亚胺合金具有很好的相分离结构,是一类新型耐高温、有韧性的热塑性弹性体。聚醚分子量相同的聚氨酯和聚酰亚胺形成的合金软段相容,合金具有两相结构;聚醚分子量不同的聚氨酯和聚酰亚胺形成的合金软段存在相分离,合金具有三相结构,表现在材料外观上分别为透明不透明的韧性膜,少量聚酰亚胺的掺入,能大大增加材料的耐热性能,而合金的材料力学性能没有明显变化。  相似文献   

18.
通过分子设计合成了一种含叔丁基、醚键和双酚A单元的二胺单体2,2-二(3'-叔丁基-4'-氨基二苯醚-4-基)丙烷(4),然后将其与4种商品化的芳香二酐单体:联苯四羧酸二酐(BPDA)、二苯醚四酸二酐(OPDA)、二苯六氟异丙基四酸二酐(6FDA)和均苯四酸二酐(PMDA)经高温"一步法"制备了一系列新型聚酰亚胺(PI)树脂,并对它们的结构与性能进行了研究.结果表明,该系列PI在NMP、DMF、DMAc、THF和CHCl3等普通有机溶剂中具有良好的溶解性;玻璃化转变温度Tg(DSC)在265~302℃之间,5%热失重温度(N2氛围)在519℃以上;在400~760 nm可见光波长范围内,具有优异的光学透明性,透光率约等于或大于90%;PI的数均分子量(Mn,GPC)在1.90×10~4~3.90×10~4范围内,分子量分布(PDI)介于2.63~4.63之间,X-射线衍射(XRD)结果表明所得PI为无定形聚合物,吸水率低于0.5%.叔丁基、醚键和双酚A单元同时引入具有协同效应,可提高PI的溶解性和透明性,并保持PI原有良好的热稳定性、机械性能和较低的吸水率.  相似文献   

19.
以4,4'-(9-芴基-9,9-二基)二苯胺和含羰基的二溴化合物为单体,通过钯催化的Buchwald-Hartwig交叉偶联反应,缩聚合成了3种不同结构的含芴聚亚胺酮(1a~1c),其结构经UV-Vis, 荧光光谱,1H NMR, IR和热分析表征.分析结果表明,1的重均分子量5×104,分子量分散系数3.0,玻璃化转变温度250 ℃,热分解温度520 ℃.1在二甲基乙酰胺中的UV-Vis最大吸收波长271 nm和369 nm,最大荧光发射波长491 nm和522 nm.  相似文献   

20.
共聚聚酰亚胺膜材料的合成及其气体渗透性能研究   总被引:1,自引:0,他引:1  
以2,2′-双(3,4-二羧基苯基)六氟丙烷二酐(6FDA)作为二酐单体,1,3-苯二胺(mPDA)和2,6-二氨基甲苯(2,6-DAT)为二胺单体,采用溶液共缩聚方法合成了一系列新型共聚聚酰亚胺(6FDA-2,6-DAT/mPDA),该类聚合物均能溶于DMF、DMAc、NMP等极性非质子溶剂中,具有较好的成膜性.测试了H2、N2、O2、CH4、CO25种气体在6FDA-2,6-DAT/mPDA共聚聚酰亚胺致密膜中的渗透性能.结果显示,该系列共聚物具有优异的分离性能.在35℃,0.2 MPa下,H2/N2、O2/N2、CO2/CH4的分离性能均接近或突破Robeson上限.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号