首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
Co-deposition technique by means of simultaneous ion beam sputtering of nickel and silicon onto SiC was performed for tailoring of Ni-silicide/SiC contacts. The prepared samples were analysed by means of XRD and XPS in order to obtain information about the surface and interface chemistry. Depth profiling was used in order to analyse in-depth information and chemical distribution of the specimens. XRD results showed that the main phase formed is Ni2Si. The XPS analysis confirmed the formation of the silicide on the surface and showed details about the chemical composition of the layer and layer/substrate interface. Moreover, the XPS depth profiles with detailed analysis of XPS peaks suggested that tailoring of C distribution could be monitored by the co-deposition technique employed.  相似文献   

3.
The formation of higher manganese silicide (HMS) films on silicon and the properties of the silicide-silicon interface are studied. Morphology analysis of the surface and thin transition layer at the HMS-Si interface suggests that the growth of HMS films by the method of Mn reactive diffusion follows the vapor-liquid-crystal mechanism.  相似文献   

4.
We have demonstrated the effectiveness of Raman spectroscopy for monitoring nickel silicide formation processes on the surface of silicon wafers, with deposition of a composite metal layer (nickel, platinum, and vanadium) under industrial process conditions in microelectronics. The observed shift of all the NiSi lines toward lower energies is associated with formation of the metastable silicide phase Ni1?x Pt x Si, which leads to the presence of stresses in the lattice as a result of the increase in the distances between atoms.  相似文献   

5.
The solid-phase synthesis of iron silicides on the Si(100)2 × 1 surface with a 5-ML-thick iron film deposited at room temperature was studied by high-resolution photoelectron spectroscopy with the use of synchrotron radiation. Computer simulation of the measured Si 2p spectra revealed the formation of silicides in this system already under annealing at a temperature of 60°C. The process of formation consists in successive syntheses of three iron silicide phases, more specifically, monosilicide ε-FeSi, metastable disilicide γ-FeSi2, and disilicide β-FeSi2. The temperature ranges of existence of these phases were determined. Silicon was found to segregate on the γ-FeSi2 surface.  相似文献   

6.
This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.  相似文献   

7.
The thickness distribution and structure of ZnO films deposited by DC-magnetron sputtering of a zinc target in argon-oxygen gaseous medium at substrate temperature of 27°C and gas pressure in the chamber within 5×10?3 ? 5×10?2 mm Hg was investigated. It was revealed that the use of a target with a certain depression in the sputtering zone allows depositing high quality c-oriented films at lower gas pressure than with a flat target. The dependence of film quality on geometric factors is interpreted on the basis of theoretical computations with the assumption that the film structure is improved when the flux of deposited Zn particles decreases while their energy increases.  相似文献   

8.
The possibility is demonstrated of fabricating arrays of cone-shaped GaAs nanowhiskers with a surface number density of up to 109 cm-2, a characteristic height ranging from 300 to 10000 nm, and a transverse size of approximately 200 nm at the base and from 200 to 10 nm or smaller at the top. The characteristic height of GaAs nanowhiskers varies in direct proportion to the effective thickness of the deposited material layer and in inverse proportion to the transverse nanowhisker size at the top. The growth of GaAs nanowhiskers is studied as a function of the deposition rate, the temperature, and the crystallographic orientation of the substrate. From an analysis of the obtained dependences of the nanowhisker size on these parameters, it is concluded that GaAs nanowhiskers are formed through the diffusion mechanism.  相似文献   

9.
A kinetic model of growth and coalescence of oxygen and carbon precipitates has been proposed. This model in combination with the kinetic model of the formation of oxygen and carbon precipitates represents a unified model of precipitation in as-grown dislocation-free silicon single crystals during their cooling in the temperature range from 1683 to 300 K. It has been demonstrated that the results of the calculations are in good agreement with the experimental data obtained from investigations of grown-in microdefects.  相似文献   

10.
Individual multi-walled carbon nanotubes (CNTs) were deposited onto microelectrodes and embedded in nickel to achieve low-ohmic contact resistances. Electroless deposition of nickel onto gold/iron, palladium, and cobalt microelectrodes was used to form electrically stable bonds at the interfaces between the electrodes and CNTs. Resistance measurements showed that the contact resistances of the CNTs on gold/iron and palladium were significantly improved by nickel embedding, whereas no further improvement was found for the CNTs on cobalt. Electroless metal deposition is a parallel process providing stable electrical and mechanical contacts between CNTs and metallic microelectrodes. PACS 81.07.De  相似文献   

11.
In this paper a new interatomic potential based on the Kieffer force field and designed to perform molecular dynamics (MD) simulations of carbon deposition on silicon surfaces is implemented. This potential is a third-order reactive force field that includes a dynamic charge transfer and allows for the formation and breaking of bonds. The parameters for Si-C and C-C interactions are optimized using a genetic algorithm. The quality of the potential is tested on its ability to model silicon carbide and diamond physical properties as well as the formation energies of point defects. Furthermore, MD simulations of carbon deposition on reconstructed (100) silicon surfaces are carried out and compared to similar simulations using a Tersoff-like bond order potential. Simulations with both potentials produce similar results showing the ability to extend the use of the Kieffer potential to deposition studies. The investigation reveals the presence of a channelling effect when depositing the carbon at 45°?incidence angle. This effect is due to channels running in directions symmetrically equivalent to the (110) direction. The channelling is observed to a lesser extent for carbon atoms with 30°?and 60°?incidence angles relative to the surface normal. On a pristine silicon surface, sticking coefficients were found to vary between 100 and 73%, depending on deposition conditions.  相似文献   

12.
Rogov  A. V.  Fanchenko  S. S. 《Technical Physics》2012,57(2):286-291
The influence of magnetron deposition conditions on the size of Au nanoparticles and their aggregates obtained by condensation in a neutral liquid is studied experimentally. A model is suggested in which the nanoparticles and aggregates form in a thin subsurface layer, which becomes oversaturated by atoms and resulting nanoparticles when the liquid flows through a localized deposition zone. The process stops when the products leave this zone because of stirring. The size of nanoparticles and aggregates depends on the particle flux density and exposure time in the deposition zone. The final size of nanoparticles depends on the exposure time only slightly, while that of aggregates significantly depends on the exposure time. This allows one to prepare a concentrated solution of almost monodisperse nanoparticles with a low degree of aggregation by properly selecting deposition conditions and multiply passing the liquid through the deposition zone.  相似文献   

13.
14.
比较2种溅射方法镀制的氧化硅薄膜   总被引:1,自引:1,他引:0  
比较了磁控反应溅射(RMS)法与离子束反应溅射(RIBS)法沉积得到的氧化硅薄膜的光学特性,并确定了其对折射率n、消光系数k、沉积速率和混合工作气体Ar/O2中氧含量的依赖性关系。工作气体中O2含量大于15%时通过RMS法沉积的氧化硅薄膜在0.63μm波长折射率约为1.52~1.55,消光系数低于10-5。当O2含量在80%以上时RIBS方法沉积氧化硅薄膜的折射率n=1.52~1.6,消光系数低于10-5。用RMS沉积SiO2薄膜,当氧气量超过15%时发生反应模式,此时沉积速率下降近5倍。而用RIBS时,沉积速率并不依赖氧气在混合工作气体中的含量。  相似文献   

15.
16.
The influence of X-ray irradiation on the formation of nickel electroplating coatings is studied. The regularities of the nickel electrocrystallization kinetics under X-ray irradiation of different wavelengths, such as the increase in the deposition rate and metal output by the current, are revealed. The features of the structuring of the nickel electroplating coatings under irradiation are revealed. The influence of X-ray irradiation on microhardness, microdeformations, and dislocation structure is estimated. An increase in microhardness and a decrease in microdeformations of nickel coatings with the growth of the radiation energy are established.  相似文献   

17.
The apparent Schottky barrier height (SBH) of the nickel silicide Schottky contacts annealed at different temperatures was investigated based on temperature dependence of I-V characteristic. Thermionic emission-diffusion (TED) theory, single Gaussian and double Gaussian models were employed to fit I-V experimental data. It is found the single Gaussian and double Gaussian SB distribution model can give a very good fit to the I-V characteristic of apparent SBH for different annealing temperatures. Also, the apparent SBH and the leakage current increase with annealing temperatures under reverse voltage. In addition, the homogeneity of interfaces for the samples annealed at temperatures of 500 and 600 °C is much better than that of the samples annealed at temperatures of 400, 700, and 800 °C. This may result from the phase transformation of nickel silicide due to the different annealing temperatures and from the low Schottky barrier (SB) patches.  相似文献   

18.
Synthesis of silicon carbide and diamond nanoparticles is studied during short-pulse implantation of carbon ions and protons into a silicon target. The experiments are carried out using a TEMP source of pulsed powerful ion beams based on a magnetically insulated diode with radial magnetic field B r . The beam parameters are as follows: the ion energy is 300 keV, the pulse duration is 80 ns, the beam consists of carbon ions and protons, and the ion current density is 30 A/cm2. Single-crystal silicon wafers serve as a target. SiC nanoparticles and nanodiamonds form in the surface layer of silicon subjected to more than 100 pulses. The average coherent domain sizes in the SiC particles and nanodiamonds are 12–16 and 8–9 nm, respectively.  相似文献   

19.
Silicon enhances carbon nanotube growth on nickel films by chemical vapor deposition using methane and hydrogen. Nanotube growth characteristic is significantly improved on nickel films patterned by argon plasma etching on silicon oxide layers. Auger electron spectroscopy shows that a reduced silicon phase forms in the surface silicon oxide layer by Ar ion bombardment used for patterning. The enhanced growth of carbon nanotubes could be ascribed to an oxygen removal effect by silicon in the process of synthesis.  相似文献   

20.
The growth of manganese silicide films on silicon under the conditions of equilibrium and non-equilibrium diffusion doping of the silicon from the vapor phase is studied for different weight percent of the dopant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号