首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theory of X-ray radiation from relativistic channeled electrons at the Bragg angles—parametric X-ray radiation (PXR) during channeling (PXRC)—is developed while accounting for two quantum effects: the initial population of bound states of transverse motion and the transverse “form-factor” of channeled electrons. An experiment was conducted using a 255 MeV electron beam from a linac at the SAGA Light Source. We have identified a difference in the angular distributions of PXR and PXRC and obtained a fairly good agreement between the theoretical and experimental results.  相似文献   

2.
We present the results of the ionosphere oblique chirp sounding on the Cyprus—Nizhny Novgorod, Cyprus—Rostov-on-Don, and Moscow—Rostov-on-Don mid-latitude paths during X-ray flares in January 17, 19, and 20, 2005. It is found that during strong flares the blackout of short radio waves was observed over the entire frequency range of chirp sounding on the Cyprus—Nizhny Novgorod and Cyprus—Rostov-on-Don paths. Modeling of the electron-density profiles in the lower ionosphere based on absorption of short radio waves on the Moscow—Rostov-on-Don path at different stages of the decay of the X-ray radiation intensity is carried out. It is shown that at the instant corresponding to the maximum value of the flare radiation flux, the electron density in the lower ionosphere at altitudes 60–80 km increased by a factor of about 10 and 100 for flares with radiation flux densities 5·10−2 and 3·10−1 erg/(cm 2·s) in the wavelength range 0.5–4.0 Å which took place in January 19 and 20, respectively. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 1, pp. 1–8, January 2007.  相似文献   

3.
A novel polymerizable surfactant (so-called surfmer) was synthesized and characterized according to its structure, surface activity and polymerization ability. Polymeric micelles (size of 6 and 130 nm) appeared in the polyreaction initiated by free radicals from VA-044. In the presence of the monomer (i.e., methyl methacrylate) microemulsion systems were formed that in turn were transformed into latex entities (size — 40 nm). Additionally, an emulsion polymerization was performed with the use of n-hexadecane as an oil phase resulting in the production of nanocapsules (size in the range — 165–220 nm). The shape and morphologies of the nanoobjects were confirmed using Atomic Force Microscopy (AFM).  相似文献   

4.
Nanoparticles, the building blocks of many engineered nanomaterials, can make their way into the environment or into organisms, either accidentally or purposefully. The intent of this study is to provide some insight into the complex environmental, health, and safety issues associated with engineered nanomaterials. In particular, here the state of commercially manufactured silver nanoparticles—i.e., will silver nanoparticles be present as isolated particles, agglomerates, or dissolved ions—in two simulated biological media is explored. Two different commercially manufactured silver nanoparticle samples, one that has been surface modified with a thick polymer coating to render them more water-soluble and the other, with a sub-nanometer surface layer, are studied. The experimental results and the extended DLVO model calculations show that silver nanoparticles have a propensity to settle out in high ionic strength media independent of surface modification. Furthermore, single nanoparticles as well as aggregates/agglomerates are present together in these solutions. Silver ion release in these simulated biological buffers with pHs of 4.5 and 7.4 is negligible after 96 h.  相似文献   

5.
Two categories of life are currently recognized—chemosynthetic and photosynthetic—indicating their principal free energy resource as either chemicals or electromagnetic radiation. Building on recent developments in thermodynamics, we posit a third category of life—thermosynthetic life (TL)—which relies on environmental heat rather than traditional free energy sources. Since thermal energy is more abundant than chemicals or light in many settings, thermosynthesis offers compelling evolutionary possibilities for new life forms. Based on variants of standard cellular machinery, a physical model is proposed for the conversion of thermal energy into biochemical work. Conditions favorable to thermosynthetic life and prospects for its discovery are assessed. Terrestrially, deep-subsurface unicellular anaerobic superthermophiles are deduced to be likely TL candidates.  相似文献   

6.
The dependence of the characteristic X-ray radiation yield from CaF2 crystal on the formed microchannel depth under highly intensive (I ∼ 3 × 1015 W/cm2) laser pulses with different contrast was obtained. The maximum of the characteristic X-ray radiation yield at these experimental conditions corresponded to the microchannel depth of 30–50 μm. The efficiency of the laser radiation conversion to the characteristic X-ray radiation increased from 6 × 10−8 for the surface up to 10−7 in the microchannel. The dependence of the characteristic X-ray radiation yield on the viewing angle showed that the source of X-ray radiation was located near the surface inside the microchannel.  相似文献   

7.
Extreme ultraviolet (EUV) radiation is the electromagnetic radiation ranging from vacuum ultraviolet to soft X-rays. A single EUV photon carries enough energy to ionize any atom or molecule. The penetration depth of the radiation in any material is very short, ranging from tens to hundreds nanometers. Intense EUV pulses can remove material from the surface or modify its morphology or/and chemical structure. In this work, the radiation from a laser-plasma EUV source based on a double-stream gas-puff target was used for surface modification of polyethylene terephthalate (PET). The PET samples were irradiated with the EUV pulses emitted from krypton plasma and focused with a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated for 1 s–2 min at a 10-Hz repetition rate. Surface morphology of polymer samples after irradiation was investigated using a scanning electron microscope. Changes in chemical surface structure of the irradiated samples were investigated using an X-ray photoelectron spectroscopy. Different kinds of surface microstructures were obtained depending on the EUV fluence in a single pulse and the total EUV fluence. XPS measurements also revealed a modification of the chemical structure.  相似文献   

8.
Core–shell nanocapsules are receiving increasing interest for drug delivery applications. Silica nanocapsules have been the focus of intensive studies due to their biocompatibility, versatile silica chemistry, and tunable porosity. However, a versatile one-step preparation of silica nanocapsules with well-defined core–shell structure, tunable size, flexible interior loading, and tailored shell composition, permeability, and surface functionalization for site-specific drug release and therapeutic tracking remains a challenge. Herein, an interfacially confined sol–gel process in miniemulsion for the one-step versatile preparation of functional silica nanocapsules is developed. Uniform nanocapsules with diameters from 60 to 400 nm are obtained and a large variety of hydrophobic liquids are encapsulated in the core. When solvents with low boiling point are loaded, subsequent solvent evaporation converts the initially hydrophobic cavity into an aqueous environment. Stimuli-responsive permeability of nanocapsules is programmed by introducing disulfide or tetrasulfide bonds in the shell. Selective and sustained release of dexamethasone in response to glutathione tripeptide for over 10 d is achieved. Fluorescence labeling of the silica shell and magnetic loading in the internal cavity enable therapeutic tracking of nanocapsules by fluorescence and electron microscopies. Thus, silica nanocapsules represent a promising theranostic nanoplatform for targeted drug delivery applications.  相似文献   

9.
For the first time Fe–Pt alloy included carbon nanocapsules were synthesized by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol. This contrasts the extensively used chemical synthesis methods which produce uncoated Fe–Pt alloy nanoparticles. We proposed that the as-synthesized Fe–Pt alloy included carbon nanocapsules are potentially useful in biomedical applications. Thereby an aim of this work was to coat the Fe–Pt alloy nanoparticles by graphite shells using plasma discharge in liquid ethanol and to study the structure and magnetic properties of the carbon encapsulated Fe–Pt alloy nanoparticles. The core–shell structured nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. These methods revealed the presence of a disordered face-centered cubic (fcc) structure (γFe, Pt) in the cores of the as-synthesized carbon nanocapsules. The as-synthesized carbon nanocapsules showed the soft magnetic character at room temperature. These carbon nanocapsules may provide a new approach in the transport and delivery of anticancer drugs.  相似文献   

10.
Thermooxidative processes are investigated by the method of temperature-programmed decomposition with the use of a prism infrared spectrometer. Thermal degradation of —OC4H9, —OP(H)(O)OC4H9 and —OP(H)(O)OC2H5 groups on the surface of modified pyrogenic silicas in air is considered. The resemblance between processes of oxidation of surface PH-groups irrespective of the means of silica modification is shown. Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 31, Nauka Ave., Kiev, 252022, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 3, pp. 326–332, May–June, 1998.  相似文献   

11.
Long-term clinical success of endosseous dental implants is critically related to a wide bone-to-implant direct contact. This condition is called osseointegration and is achieved ensuring a mechanical primary stability to the implant immediately after implantation. Both primary stability and osseointegration are favoured by micro-rough implant surfaces which are obtained by different techniques from titanium implants or coating the titanium with different materials. Host bone drilled cavity is comparable to a common bone wound. In the early bone response to the implant, the first tissue which comes into contact with the implant surface is the blood clot, with particular attention to platelets and fibrin. Peri-implant tissue healing starts with an inflammatory response as the implant is inserted in the bone cavity, but an early afibrillar calcified layer comparable to the lamina limitans or incremental lines in bone is just observable at the implant surface both in vitro than in vivo conditions. Just within the first day from implantation, mesenchymal cells, pre-osteoblasts and osteoblasts adhere to the implant surface covered by the afibrillar calcified layer to produce collagen fibrils of osteoid tissue. Within few days from implantation a woven bone and then a reparative trabecular bone with bone trabeculae delimiting large marrow spaces rich in blood vessels and mesenchymal cells are present at the gap between the implant and the host bone. The peri-implant osteogenesis can proceed from the host bone to the implant surface (distant osteogenesis) and from the implant surface to the host bone (contact osteogenesis) in the so called de novo bone formation. This early bone response to the implant gradually develops into a biological fixation of the device and consists in an early deposition of a newly formed reparative bone just in direct contact with the implant surface. Nowadays, senile and post-menopausal osteoporosis are extremely diffuse in the population and have important consequences on the clinical success of endosseous dental implants. In particular the systemic methabolic and site morphological conditions are not favorable to primary stability, biological fixation and final osseointegration.

An early good biological fixation may allow the shortening of time before loading the implant, favouring the clinical procedure of early or immediate implant loading. Trabecular bone in implant biological fixation is gradually substituted by a mature lamellar bone which characterizes the implant ossoeintegration. As a final consideration, the mature lamellar bone observed in osseointegrated implants is not always the same as a biological turnover occurs in the peri-implant bone up to 1 mm from the implant surface, with both osteogenesis and bone reabsorption processes.  相似文献   


12.
Since violacein—an antibiotic, antiviral, and antiparasitic compound—exhibits poor solubility in water, polymeric poly-(d,l-lactide-co-glycolide) nanoparticles containing this compound improved its solubility and biological activity. The nanoparticles were prepared by the nanoprecipitation method and characterized in terms of average diameter, zeta potential, drug loading, polymer recovery, in vitro release kinetic, and in vitro antibacterial activity. Nanoparticles with diameters between 116 and 139 nm and negative-charged outer surfaces were obtained. Drug-loading efficiency and polymer recovery were 87 and 93%, respectively. In vitro release kinetics assays showed that violacein loaded in these nanoparticles has sustained release behavior until 5 days. Both free and nanoparticles-loaded violacein exhibited in vitro antibacterial activity against Staphylococcus aureus ATCC 29213 and ATCC 25923 strains and exhibiting around two to five times lower minimum inhibitory concentration (MIC) than free violacein, respectively. The encapsulated violacein was efficient against methicilin-resistant Staphylococcus aureus (MRSA) strains. No significant activity against Escherichia coli and Salmonella enterica was found.  相似文献   

13.
The aim of this study was to elucidate the degradation mechanisms in polysilanes, especially one-dimensional polysilylenes, with respect to the search for suitable resists for silicon industrial nanotechnologies. To this end we used the combined methods of photoelectron spectroscopies — PES (UPS and XPS) and photoluminescence — PL. Films of aryl-methyl-substituted polysilane chain, poly[methyl(phenyl)silylene] (PMPSi), prepared by casting from benzene solution, were analysed by X-ray and UV-induced photoelectron spectroscopy. Photoelectron spectra were recorded from the pristine PMPSi surface and after the UV photodegradation. Pronounced changes were found in the HeI induced photoelectron spectra indicating redistribution of filled Si 3s-like and Si 3p-like states. The photodegradation by UV radiation for two different degradation wavelengths λ = 266 and 355 nm was examined also by PL. We concentrated on the PL study in the region of the σ*-σ excitonic deexcitation after major degradations, studying the disorder and dangling bonds (DB) created by the degradation process. The results of both complementary methods are interpreted in accordance with our recent paper [1], with the degradation process explained by two competing phenomena, i.e. the energy dependent exciton transport by diffusion process and Si-Si bond scission. Presented at the X-th Symposium on Suface Physics, Prague, Czech Republic, July 11–15, 2005.  相似文献   

14.
An appropriate choice of laser and process parameters enables new approaches for the fabrication of polymeric lab-on-chip devices with integrated functionalities. We will present our current research results in laser-assisted modification of polystyrene (PS) with respect to the fabrication of polymer devices for cell culture applications. For this purpose laser micro-patterning of PS and subsequent surface functionalization was investigated as function of laser and process parameters. A high power ArF-excimer laser radiation source with a pulse length of 19 ns as well as a high repetition ArF-excimer laser source with a pulse length of 5 ns were used in order to study the influence of laser pulse length on laser-induced surface oxidation. The change in surface chemistry was characterized by X-ray photoelectron spectroscopy and contact angle measurements. The difference between laser-assisted modification versus UV-lamp assisted modification was investigated. A photolytic activation of specific areas of the polymer surface and subsequent oxidization in oxygen or ambient air leads to a chemically modified polymer surface bearing carboxylic acid groups well-suited for controlled competitive protein adsorption or protein immobilization. Finally, distinct areas for cell growth and adhesion are obtained.  相似文献   

15.
We consider the phenomenon of radiation-accelerated high-temperature mass transfer (RAHTMT) in heterogeneous ion structures under the influence of powerful electron beams. We present a theoretical basis for a surface-recombination mechanism for RAHTMT. The basis for the mechanism is the notion of volume-inhomogeneous dissipation of radiation energy in heterogeneous structures and thermal-diffusion stimulation of mass transfer. We show that high-temperature radiation annealing is an efficient technological method for obtaining ceramics with different and unique properties. Methods of radiation modification have been used to obtain corundum—zircon ceramics with world-class properties. Tomsk Polytechnic University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 176–192, November, 1996.  相似文献   

16.
The optical characteristics of a UV broadband lamp that was excited by a longitudinal glow discharge and operated on Kr—Br2—I2, Xe—Br2—I2, and Kr—Xe—Br2—I2 mixtures are investigated. The interelectrode spacing in the lamp is 10 cm, the inner diameter of a discharge tube being 14 mm. The current-voltage characteristics, the emission spectra of the plasma, and the dependence of the intensity of spectral lines (the amplitude of radiation bands) on the power that was pumped into the plasma based on mixtures of various compositions and pressures, as well as the radiation power in the spectral range from 200 to 390 nm, are studied. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 6, pp. 840–842, November–December, 2005.  相似文献   

17.
We argue that, on the basis of recent experimental data, there is possible existence of a finite formation time of strongly interacting plasma in nuclear collisions at RHIC. To show this, we construct a simple model based on a Monte Carlo simulation of nucleus—nucleus collisions with a realistic nuclear density distribution. The most striking feature of the experimental data—an absence of absorption of high-transverse-momentum pions in the reaction-plane direction for midperipheral collisions—points to the presence of a surface zone with no absorption and strong suppression in the inner core. A natural interpretation of such a zone could be the plasma formation time T ≃ 2–3 fm/c. With this assumption, we describe the angular anisotropy of high-transverse-momentum pions with respect to the reaction plane and the centrality dependence of the nuclear modification factor in Au + Au and Cu + Cu collisions.We present predictions for LHC. The text was submitted by the author in English.  相似文献   

18.
The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370 ± 96 nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50 nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15 dB at a concentration of 0.045 mg/mL at a frequency of 10 MHz. Loss of signal for air-filled nanocapsules was 2 dB after 30 min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging.  相似文献   

19.
Two nondestructive methods of X-ray lens testing—X-ray microtomography and phase contrast introscopy—are analyzed and compared. Refractive lenses fabricated via laser stereolithography are used as a comparative object. The first samples of photopolymer lenses have been created via the rotation method, in which a capillary filled with a Dikhrom Lyuks liquid photopolymer is exposed to UV radiation during centrifuge rotation. Lens samples have been fabricated at the centrifuge’s angular velocities lying in the range from 3000 to 5000 rpm. The features of photopolymer transition from the liquid state into the solid phase under UV irradiation have been investigated to estimate their influence on the formation of the required shape of a refractive profile.  相似文献   

20.
We study the property of certain complex networks of being both sparse and highly connected, which is known as “good expansion” (GE). A network has GE properties if every subset S of nodes (up to 50% of the nodes) has a neighborhood that is larger than some “expansion factor” φ multiplied by the number of nodes in S. Using a graph spectral method we introduce here a new parameter measuring the good expansion character of a network. By means of this parameter we are able to classify 51 real-world complex networks — technological, biological, informational, biological and social — as GENs or non-GENs. Combining GE properties and node degree distribution (DD) we classify these complex networks in four different groups, which have different resilience to intentional attacks against their nodes. The simultaneous existence of GE properties and uniform degree distribution contribute significantly to the robustness in complex networks. These features appear solely in 14% of the 51 real-world networks studied here. At the other extreme we find that ∼40% of all networks are very vulnerable to targeted attacks. They lack GE properties, display skewed DD — exponential or power-law — and their topologies are changed more dramatically by targeted attacks directed at bottlenecks than by the removal of network hubs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号