首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.  相似文献   

2.
Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.  相似文献   

3.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

4.
This paper describes the phase separating behavior of Langmuir monolayers from mixtures of different lipids that (i) either carry already a glycopeptide recognition site or can be easily modified to carry one and (ii) polymerizable lipids. To ensure demixing during compression, we used fluorinated lipids for the biological headgroups and hydrocarbon based lipids as polymerizable lipids. As a representative for a lipid monomer, which can be polymerized in the hydrophilic headgroup, a methacrylic monomer was used. As a monomer, which can be polymerized in the hydrophobic tail, a lipid with a diacetylene unit was used (pentacosadiynoic acid, PDA). The fluorinated lipids were on the one hand a perfluorinated lipid with three chains and on the other hand a partially fluorinated lipid with a T(N)-antigen headgroup. The macroscopic phase separation was observed by Brewster angle microscopy, whereas the phase separation on the nanoscale level was observed by atomic force microscopy. It turned out that all lipid mixtures showed (at least) a partial miscibility of the hydrocarbon compounds in the fluorinated compounds. This is positive for pattern formation, as it allows the formation of small demixed 2D patterned structures during crystallization from the homogeneous phase. For miscibility especially a liquid analogue phase proved to be advantageous. As lipid 3 with three fluorinated lipid chains (very stable monolayer) is miscible with the polymerizable lipids 1 and 2, it was mostly used for further investigations. For all three lipid mixtures, a phase separation on both the micrometer and the nanometer level was observed. The size of the crystalline domains could be controlled not only by varying the surface pressure but also by varying the molar composition of the mixtures. Furthermore, we showed that the binary mixture can be stabilized via UV polymerization. After polymerization and subsequent expansion of the barriers, the locked-in polymerized structures are stable even at low surface pressures (10 mN/m), where the unpolymerized mixture did not show any segregation.  相似文献   

5.
In this work the interaction between human serum albumin (HSA) and a monofluorinated phospholipid, 1-palmitoyl-2-[16-fluoropalmitoyl-phosphatidylcholine] (F-DPPC), was studied by using Langmuir monolayer and Brewster angle microscopy (BAM) techniques. Different amounts of F-DPPC were spread on a previously formed HSA monolayer located at the air/water interface at 25 °C and the mixed monolayers thus obtained showed the existence of a liquid expanded-liquid condensed (LE-LC) phase transition (at 14 mN/m), attributed to the pure F-DPPC monolayer, coexisting with a second transition (at 22-24 mN/m) corresponding to the protein conformational change from an unfolded state to another in “loops” configuration. Relative thickness measurements recorded during the compression of the mixed monolayers showed the existence of an “exclusion” surface pressure (πexc), above which the protein is squeezed out the interface, but not totally. BAM images reveal that some protein molecules in a packed “loops” configuration remain at the interface at surface pressures higher than the “exclusion” surface pressure. The application of the Defay-Crisp phase rule to the phase diagram of the F-DPPC/HSA system can explain the existence of certain regions of surface pressure in which the mixed monolayer components are miscible, as well as those others that they are immiscible.  相似文献   

6.
In situ photochromic process in the monolayer of aphotochromic spiropyran derivative without long alkyl chain,was investigated.The photochromism at the air/water interface under differnet surface pressures was studied by surface pressure-area isotherms,surface pressure-time curves,area-time curves and Brewster angle microscopy.Both forms of the compound were found to form monolayers at the air/water interface althouhg it does not have long alkyl chain.A large area expansion in the monolayer corresponding to a zreo^th order reaction was found at the initial stage of the UV light irradiation.A series of dynamic investigations revealed that at high pressure after phase transition in the monolayer,the surface pressure changes greatly umder alternative irradiation of UV and visible light.An obvious morphological change accompanying with the photochromism was observed in situ.  相似文献   

7.
The behavior of binary mixed Langmuir monolayers from gramicidin A (GA) and ethyl nonadecanoate (EN), spread on aqueous subphases containing NaCl and CaCl2, was investigated on the basis of the analysis of surface pressure-average area per molecule (pi-A) isotherms complemented with Brewster angle microscopy (BAM) images. Compression modulus versus surface pressure (C(S-1)-pi) curves indicate the existence of interactions in the GA-EN mixed monolayers at low surface pressures (below 5 mN m(-1)). However, for mixtures in which the ester is the predominant component, both GA and EN are miscible within regions from fully expanded to collapse. To examine the interactions between both components in the studied system, values of the mean molecular area per molecule (A12) were plotted as a function of molar fraction of gramicidin A (X(GA)). A12-X(GA) plots exhibit negative deviations from ideality at high surface pressures, wherein beta-helices of GA are vertically oriented in respect to the interface. However, at surface pressures below the plateau transition, which is due to reorientation of GA, the binary system obeys the additive rule. Brewster angle microscopy (BAM) was applied for a direct visualization of the monolayers morphologies. The obtained images prove that for molar ratios of GA > or = 0.3 and at surface pressures above 5 mN m(-1), both components are immiscible at the interface. The observed negative deviations from the additively rule were attributed to the formation of a three-dimensional phase in the mixed film, which provokes its contraction at the interface.  相似文献   

8.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

9.
A dipalmitoylphosphatic acid (DPPA) monolayer at the air/liquid interface is used as a binding layer to incorporate glucose oxidase (GOx) from the subphase. The effects of the adsorption time of GOx on the behavior of the mixed DPPA/GOx monolayer and the relevant structure of the mixed LB film were studied using the characteristics of the pressure-area (pi-A) isotherm, Brewster angle microscopy (BAM), and atomic force microscopy (AFM). The experimental results show that two equilibrium states of GOx adsorption exist in the presence of a DPPA monolayer. The first equilibrium stage occurs at tens of minutes after spreading of DPPA, and a surface pressure of ca. 7.5 mN/m is obtained. The second equilibrium stage approaches slowly, and a higher equilibrium surface pressure (ca. 16 mN/m) was obtained at ca. 8 h after the first stage. The BAM and AFM images show that, after the second equilibrium stage is reached, a more condensed phase and rough morphology are obtained on the mixed DPPA/GOx monolayer, indicating a higher amount of GOx incorporated into the mixed film. For the first equilibrium stage of GOx adsorption, DPPA molecules can still pack regularly and closely under compression, suggesting that GOx molecules are mainly located beneath the DPPA monolayer at the compressed state. A more uniform phase was detected on a film prepared after the first equilibrium stage was reached. The present result indicates that distinct structures and properties of mixed DPPA/GOx films can be prepared from the various stages of GOx adsorption.  相似文献   

10.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

11.
Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating–cooling followed by compression–expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.  相似文献   

12.
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.  相似文献   

13.
A reflection cloud point technique allows for rapid screening of light‐dependent phase separation temperatures of thermo‐ and photoresponsive polymer/ionic liquid solutions as a function of sample thickness, molecular weight, and copolymer composition. We systematically investigate the lower critical solution temperature (LCST) phase behavior of poly(benzyl methacrylate‐stat‐(4‐phenylazophenyl methacrylate)). Under UV light, the photoresponsive azobenzene‐based repeat unit becomes more polar as the cis form dominates, increasing its solubility in the ionic liquids 1‐ethyl‐3‐methyl imidazolium and 1‐butyl‐3‐methyl imidazolium bis(trifluoromethanesulfonyl)imide. This light‐dependent polarity change leads to two phase separation temperatures, depending on the illumination wavelength. Under visible light, which drives the azobenzene moiety into the trans ground state, the LCST shows no sample thickness dependence. Under UV light, however, sample thickness plays a significant role. Samples of around 1 mm thickness show no apparent difference under UV and visible light, whereas thinner samples show an increasing difference between the phase separation temperatures with decreasing sample thickness. Neither phase separation temperature exhibits a significant dependence on molecular weight. Increasing the photoresponsive monomer content did not lead to an increase in the difference between the phase separation temperatures at fixed thickness, due to a concomitant increase in UV light absorbed at the sample surface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 281–287  相似文献   

14.
Betulinic acid (BA, a natural pentacyclic triterpene) can induce mitochondrial membrane damage and trigger the mitochondrial pathway of apoptosis in tumor cells. The monolayer behavior of binary systems of BA and cardiolipin (CL, a unique phospholipid found only in mitochondria membrane in animals) was studied by surface pressure-area (π-A) measurements and analyses and Atomic force microscopy (AFM) observation. The miscibility analysis presents that in mixed monolayers BA takes both tilted and nearly perpendicular orientations at surface pressure below 30 mN/m but only nearly perpendicular orientation at 30 mN/m. The thermodynamic stability analysis indicates that phase separation and repulsion occur in mixed BA/CL monolayers. The compressibility analysis shows that at 30 mN/m, 20% addition of BA does markedly translate the liquid-condensed CL monolayer to mixed BA/CL monolayer with the coexistence of liquid-condensed and liquid-expanded phases. The AFM images of supported monolayers give direct evidence of the conclusions obtained from the analyses of π-A isotherms. These results confirm that at high surface pressure near to real biologic situations, BA orients nearly perpendicularly with hydroxyl group toward water, causes phase separation and changes the permeability of CL film, which correlates with the mitochondrial membrane damage induced by BA.  相似文献   

15.
Hydroxyalkyl-methacrylates are very well-known hydrogel-forming biocompatible polymers. In this work, polymer-dispersed liquid crystals (LCs) based on hydroxyethyl- and hydroxypropyl-methacrylate (HEMA and HPMA) matrices are synthesised and characterised. Two different LCs from the cyano-biphenyl family (4?-pentyl-4-cyanobiphenyl [5CB] and 4?-octyl-4-cyanobiphenyl [8CB]) are used. Polymerisation kinetics, phase transitions, and morphologies generated during the polymerisation-induced phase separation process are analysed. Phase separation is observed at very low conversions, where a polymer-rich phase is initially segregated and this produces an increase in the low-conversion polymerisation rate (ascribed to the auto-acceleration effect of free-radical polymerisations in the polymer-rich phase). The liquid crystalline transition temperature decreases as the concentration of LC decreases, indicating that this phase is impurified. The liquid crystal 8CB is found to be less miscible than 5CB with the polymer matrices, so the LC-rich phase for 5CB is more impurified and its total volume in the material is smaller.  相似文献   

16.
It has recently been found that monodisperse surface micelles (hemimicelles) were formed in Langmuir monolayers of the semifluorinated alkane C8F17C16H33 (F8H16) after transfer onto silicon wafers. Grazing incidence X-ray diffraction studies have demonstrated that compression of mixed Langmuir monolayers made from combinations of dipalmitoyl phosphatidylethanolamine (DPPE) and diblock F8H16 in various molar ratios resulted in the complete expulsion of the diblock molecule at high surface pressure. F8H16 then formed a second layer on top of a DPPE-only monolayer, demonstrating a novel type of reversible, pressure-induced, vertical phase separation. Using atomic force microscopy and X-ray reflectivity, we show now that mixed DPPE/F8H16 (1:1.3) Langmuir-Blodgett films transferred onto silicon wafers below 10 mN m(-1) are laterally phase separated and consist of domains of F8H16 surface micelles in coexistence with a monolayer of DPPE. The density of the network of F8H16 surface micelles increases when the surface pressure of transfer increases. Around 10 mN m(-1), the F8H16 surface micelles start to glide on the DPPE monolayer, progressively overlying it, until total coverage is achieved.  相似文献   

17.
We have determined the structure formed at the air-water interface by semifluorinated alkanes (C(8)F(17)C(m)H(2m+1) diblocks, F8Hm for short) for different lengths of the molecule (m = 14, 16, 18, 20) by using surface pressure versus area per molecule isotherms, Brewster angle microscopy (BAM), and grazing incidence x-ray experiments (GISAXS and GIXD). The behavior of the monolayers of diblocks under compression is mainly characterized by a phase transition from a low-density phase to a condensed phase. The nonzero surface pressure phase is crystalline and exhibits two hexagonal lattices at two different scales: a long-range-order lattice of a few tens of nanometers lateral parameter and a molecular array of about 0.6 nm parameter. The extent of this organization is sufficiently large to impact larger scale behavior. Analysis of the various compressibilities evidences the presence of non organized molecules in the monolayer for all 2D pressures. At room temperature, the self-assembled structure appears generic for all the F8Hm investigated.  相似文献   

18.
《Liquid crystals》2001,28(3):437-444
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

19.
In this work we have analyzed the penetration of betalactoglobulin into a monoglyceride monolayer (monopalmitin or monoolein) spread at the air-water interface and its effects on the structural, dilatational, and topographical characteristics of mixed films. Dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology have been used, maintaining the temperature constant at 20 degrees C and the pH and ionic strength at 7 and 0.05 M, respectively. The initial surface pressure (mN/m) of the spread monoglyceride monolayer (pii(MONOGLYCERIDE)) at 10, 20, and the collapse point is the variable studied. Beta-lactoglobulin can penetrate into a spread monoglyceride monolayer at every surface pressure. The penetration of beta-lactoglobulin into the monoglyceride monolayer with a more condensed structure, at the collapse point of the monoglyceride, requires monoglyceride molecular loss by collapse and/or desorption. However, the structural, topographical, and dilatational characteristics of monoglyceride penetrated by beta-lactoglobulin mixed monolayers are essentially dominated by the presence of monoglyceride (either monopalmitin or monoolein) in the mixed film. In fact, monoglyceride molecules have the capacity to re-enter the monolayer after expansion and recompression of the mixed monolayer. Thus, monoglyceride molecular loss by collapse and/or desorption is reversible. The topography of the monolayer under dynamic conditions corroborates these conclusions.  相似文献   

20.
The antimalarial agent halofantrine penetrates dipalmitolylphosphatidylcholine (DPPC) monolayers resulting in an increase in surface pressure and an expansion in area occupied by the lipid components of the monolayer. This phenomenon is observed at concentrations (0.05-0.2 microm) of halofantrine that have no surface activity. Penetration increases with drug concentration and is greatest at low initial surface pressures of the monolayer. A critical surface pressure of the DPPC monolayer has been determined from constant area and constant pressure conditions. The magnitude of these values support the hypothesis that halofantrine readily penetrates the DPPC monolayers. The presence of cholesterol in the DPPC monolayer hampers penetration and a lower critical surface pressure is obtained under such conditions. Even then, a slower rate of penetration is observed only in monolayers maintained at high initial surface pressures (10, 15 mN/m), corresponding to the liquid condensed phase of the monolayer, and not at low surface pressures (2.5, 5.0 mN/m). These results help to give a better understanding of the dynamics of the halofantrine-phospholipid interaction as well as the pharmacodynamic character of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号