首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Deacidification of vegetable oils can be performed using liquid–liquid extraction as an alternative method to the classical chemical and physical refining processes. This paper reports experimental data for systems containing refined babassu oil, lauric acid, ethanol, and water at 303.2 K with different water mass fractions in the alcoholic solvent (0, 0.0557, 0.1045, 0.2029, and 0.2972). The dilution of solvent with water reduced the distribution coefficient values, which indicates a reduction in the loss of neutral oil. The experimental data were used to adjust the NRTL equation parameters. The global deviation between the observed and the estimated compositions was 0.0085, indicating that the model can accurately predict the behavior of the compounds at different levels of solvent hydration.  相似文献   

2.
Tritium levels in precipitation, atmospheric water vapour and tap water were studied in various areas in the South of Paris from 1972 to 1980. Precipitation concentrations were found to exceed the world levels usually observed due to nuclear tests. Significant monthly variations were also observed, which cannot result from the same origin. Tap water levels were constant, the annual concentrations averaged 500 pCi.1−1, which means that the global environmental impact of these local concentrations is negligible. The exposure dose to man is very low (5.10−4 mGy.y−1) and represents only 1/1000 of the dose from terrestrial radiation.   相似文献   

3.
The Electrolyte-UNIQUAC-NRF excess Gibbs function was applied to estimate ion specific adjustable parameters of various salts by global optimization of the experimental activity coefficients of 54 electrolyte solutions. Twenty-three ion specific parameters were obtained for water and several cations and anions. The estimated individual ion parameters have been used to predict osmotic coefficient of electrolyte solutions. By using only the specific values for ions, the anion–cation and ion–water interaction parameters of different salts can be precisely estimated. Consequently, the interaction parameters of sparingly insoluble salts without experimental activity data can be easily calculated. For a case study, the solubility of CaSO4 was predicted in relatively good agreement with experimental values over a wide range of temperatures up to 473.18 K.  相似文献   

4.
Bottled and packaged waters are an increasingly significant component of the human diet. These products are regulated at the regional, national, and international levels, and determining the authenticity of marketing and labeling claims represents a challenge to regulatory agencies. Here, we present a dataset of stable isotope ratios for bottled waters sampled worldwide, and consider potential applications of such data for regulatory, forensic and geochemical standardization applications. The hydrogen and oxygen isotope ratios of 234 samples of bottled water range from -147 per thousand to +15 per thousand and from -19.1 per thousand to +3.0 per thousand, respectively. These values fall within and span most of the normal range for meteoric waters, indicating that these commercially available products represent a source of waters for use as laboratory working standards in applications requiring standardization over a large range of isotope ratios. The measured values of bottled water samples cluster along the global meteoric water line, suggesting that bottled water isotope ratios preserve information about the water sources from which they were derived. Using the dataset, we demonstrate how bottled water isotope ratios provide evidence for substantial evaporative enrichment of water sources prior to bottling and for the marketing of waters derived from mountain and lowland sources under the same name. Comparison of bottled water isotope ratios with natural environmental water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, suggesting that in many cases bottled water need not be considered as an isotopically distinct component of the human diet. Our findings suggest that stable isotope ratios of bottled water have the power to distinguish ultimate (e.g., recharge) and proximal (e.g., reservoir) sources of bottled water and constitute a potential tool for use in the regulatory monitoring of water products.  相似文献   

5.
ABSTRACT

Radon (222Rn) and its parent radionuclide Radium (226Ra) are classified as carcinogen. Human exposes to radon in water via inhalation and ingestion, although ingestion is the only way for radium to enter the human body. In this research, tap water collected from Bornova distinct was studied to determine the concentration of radon (222Rn) and radium (226Ra) for evaluating their radiological impact. For this reason, the annual effective doses for ingestion and inhalation were estimated. The measurements were performed using a collector chamber method. The mean concentrations of 222Rn and 226Ra were determined as 0.85 and 0.76 Bq/L, respectively. It can be stated that the 222Rn and 226Ra concentrations of tap waters here are lower than the international reference levels. Obtained concentration levels were applied to estimate annual effective dose due to the inhalation and ingestion. The dose values are also found to be lower than the recommended maximum values. On the other hand, it should be considered that consumption of these waters (2 L) and average radon and radium concentrations of water are the significant factors for estimating doses.  相似文献   

6.
Deterioration of water quality has become an ecological threat in many industrial areas worldwide due to unmanaged anthropogenic activities. Contaminants therein find out their ways to drinking water-pipes via broken or leak old- pipes. The current study aims at evaluating the suitability of tap water, collected from the main-ten-industrial cities of Egypt, for drinking purposes. Shallow and deep ground waters were also sampled from the same locations. This is one of the few research projects that are interested in quantifying the acrylamide in drinking water. The obtained results indicate that concentrations of COD, BOD, Fe, Mn, Ni, Pb, Cd, Zn and Hg were within the permissible levels in tap water while surpassed these levels in both shallow and deep ground waters. Acrylamide levels did not exceed the acceptable levels in all water samples (drinking, surface and deep ground waters). Overall, no potential risks were associated with the oral ingestion of tap water in all studied locations for both adults and children (all hazard quotient (HQ) values, defined as exposure intake dose of contaminants relative to the maximum permissible daily intake dose were below “1″). However, inorganic pollutants that exist in ground waters may cause undesirable dermal impacts when used for irrigating the green areas in these cities (used for picnics and as playgrounds). In this context, most HQ values associated with ground water dermal contact were above “1”. Specifically, Mn, Ni, Pb and Cd hazards exist for children (HQ > 1) while Ni, Pb and Cd toxicity detected for adults. This result; therefore, highlights the indirect negative impacts of industrialization on human health.  相似文献   

7.
Previous research has proven that the Poly (2,6-dimethyl-1, 4-phenylene oxide) (PPO) dosimeter is capable of receiving both in-air and underwater UV exposures that are significantly greater than those of the more commonly used polysulphone dosimeter, within a range of accuracy close to what would be expected of dosimetric measurements made in-air provided that the necessary calibrations are completed correctly by factoring in different atmospheric column ozone levels, SZA ranges, varying water turbidity and DOM levels. However, there is yet to be an investigation detailing the performance of the PPO dosimeter and its ability to measure UV in an actual field environment over an extended period of time. This research aims to bridge this gap in the knowledge by presenting a measurement campaign carried out in two real world aquatic environments and a simulated sea water environment using a batch of PPO dosimeters set at different depths and aligned to a range of different angles and geographical directions by means of attachment to a custom built dosimeter submersible float (DSF) unit over the space of a year at a sub-tropical location. Results obtained from this measurement campaign were used to compute a Kd value for the sea water in each particular season. These Kd values where found to be in close agreement to standalone Kd values derived from results taken using a standard calibrated spectrometer in the same sea water.  相似文献   

8.
Stable isotopes of water have been previously used in catchment studies to separate rain‐event water from pre‐event groundwater. However, there are a lack of studies at the smaller scale looking at the separation of event water from pre‐event water. This is particularly relevant for heavy clay soil systems through which the movement of water is uncertain but is thought to be rainwater‐dominated. The data presented here were collected at a rural site in the south‐west of England. The historic rainfall at the site was isotopically varied but similar to the global meteoric water line, with annual weighted means of ?37‰ for δ2H and ?5.7‰ for δ18O and with no seasonal variation. Drainage was sampled from the inter‐flow (surface runoff + lateral through‐flow) and drain‐flow (55 cm deep mole drains) pathways of two 1 ha lysimeters during two rainfall events, which had δ2H values of ?68‰ and ?92‰, respectively. The δ2H values of the lysimeter drainage water suggest that there was no contribution of event water during the first, small discharge (Q) event; however, the second larger event did show isotopic variation in δ2H values negatively related to Q indicating that rainwater was contributing to Q. A hydrograph separation indicated that only 49–58% of the inter‐flow and 18–25% of the drain‐flow consisted of event water. This was surprising given that these soil types are considered retentive of soil water. More work is needed on heavy clay soils to understand better the nature of water movement from these systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A new version of the ab initio gradient embedded genetic algorithm (GEGA) program for finding the global minima on the potential energy surface (PES) of mixed clusters formed by molecules and atoms is reported. The performance of the algorithm is demonstrated on the neutral H·(H(2)O)(n) (n = 1-4) clusters, that is, a radical H atom solvated in 1-4 water molecules. These clusters are of a fundamental interest. The solvated hydrogen atom forms during photochemical events in water, or during scavenging of solvated electrons by acids, and transiently exists in biological systems and possibly in inclusion complexes in the deep ocean and in the ice shield of earth. The processes associated with its existence are intriguingly complex, however, and have been the subject of decades-long debates. Using GEGA, we explicate the apparently extreme structural diversity in the H·(H(2)O)(n) (n = 1-4) clusters. All considered clusters have four basic structural types: type I, where the H radical is weakly coordinated to the oxygen atom of one of the water molecules; type II, where H is weakly coordinated to a H atom of one of the water molecules; type III, consisting of H(2), the OH radical, and n - 1 H(2)O molecules; and type IV, consisting of H(3)O and n - 1 H(2)O. There are myriads of isomers of all four types. The lowest energy species of types I and II are the isoenergetic global minima. H·(H(2)O)(n) clusters appear to be a challenging case for GEGA because they have many shallow minima close in energy some of which are significantly less stable than the global minimum. Additionally, the global minima themselves have high structural degeneracy, they are only weakly bound, and they are prone to dissociation. GEGA performed exceptionally well in finding both the global and the low-energy local minima that were subsequently confirmed at higher levels of theory.  相似文献   

10.
Haloacetic acids (HAAs) were determined in different water samples by a new, fast and simple analysis method based on enrichment of 50-ml water samples at pH 1.8 by solid-phase extraction (SPE) followed by liquid chromatography (LC) separation and electrospray ionization mass spectrometric detection in the negative ionization mode. Deprotonated (M-H)-haloacetates and decarboxylated (M-COOH)- ions were detected. Different polymeric SPE sorbents were tested, and LiChrolut EN was found to be the best material for the extraction. Complete LC separation of all compounds could only be achieved by ion-pair chromatography using triethylamine as volatile ion-pairing reagent. The detection limits were in the low microg/l range. High microg/l concentration levels for the chlorinated and brominated haloacetates were found in drinking water from a drinking water treatment plant in Barcelona, and the corresponding tap water. In swimming pool water samples from Catalonia mg/l levels and in surface river water from Portugal microg/l values were detected. These results confirm other recent reports on the ubiquitous occurrence of HAAs in aqueous environments.  相似文献   

11.
Determination of natural radioactivity in Euphrates river   总被引:1,自引:0,他引:1  
Levels of naturally occuring radionuclides (radium isotopes, U isotopes, 210Po and 210Pb) in water, sediments and biota samples collected from Euphrates river during the 1999–2000 period have been determined. Results have shown that the water contained relatively high levels of 226Ra; the largest value of 1150 mBq·l–1 was observed. These relatively high levels of 226Ra, which is one of the main radioactive contaminants in the oil industry, may be due to past discharges of production water from the oil fields situated near the river banks. 226Ra/238U activity ratio was found to be more than unity in all water samples varying between 13 and 242. In addition, the results of sediment analyses have also shown lower values for 228Ra/226Ra activity ratio than unity in those samples collected nearby the oil fields. Moreover, concentrations of other naturally occurring radionuclides such as uranium isotopes, 210Po and 210Pb for most samples (water, sediments and biota) were found to be within the natural levels and in agreement with those values reported for other local and international studies. Only mussel species were found to contain high levels of 210Po, about 1335 Bq·kg–1 dry mass was observed in Anodonta sp species. However, the results of this study can be considered a baseline for monitoring of future changes. A regional research project (including Turkey, Syria and Iraq) to study this river (from the Anatolia Mountains to the Arabian Gulf) is necessary to determine the impact of all potential sources of contaminants.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
The efficiency of ion chromatography columns packed with styrene-divinylbenzene copolymer containing quaternary ammonium groups to preconcentrate triazine herbicides and their degradation products below μg/l levels has been established. Retention is studied for different types of water. Pure methanol was used in a one-step elution. Enrichment factors of at least 4000 are achieved. Determination was carried out by using gas chromatography-single-ion monitoring mass spectrometry. Recoveries for run-off agricultural water were between 67–100% and close to 100% for ground water. The maximum admissible concentration ion drinking water (0.1 μg/l) and the alert and alarm threshold values in surface water (1 and 3 μg/l, respectively) dictated by the European Union can be measured.  相似文献   

13.
In order to ascertain water quality for human consumption, the evaluation of trace and ultra-trace elements in drinking waters of two Italian cities, Rome and Florence, is investigated together with the potabilization processes involved and the relative human exposure to the contaminants. Through a multi-elemental detection with no chemical treatment using Instrumental Neutron Activation Analysis and Proton-Induced X-ray Emission the concentration of 40 elements is determined. Basically, the concentrations of the investigated parameters in drinking waters were within the permissible limits of the World Health Organization drinking water quality guidelines and the Water Pollution Control legislation of Italian authorities. The Rome drinking water shows a chemical water composition quite similar to uncontaminated natural water: potentially toxic elements (e.g., Cr, Hg, Ni, and Sb) are present at very low concentrations whereas the levels of nutritionally essential elements are adequate and low levels of I and Se cannot be considered a cause of deficiency diseases. A multivariate statistical approach was used to identify both the origins and correlations among elements and the six different apportionments contributing to the water supply in Rome. For the drinking waters distributed in Florence, the element levels show a sufficiently good situation, except for Al (range 103–267 μg/L) that is present at reasonable concentrations for almost the entire population due to the hard potabilization procedure involving aluminum salts. The values of Metal Index (MI), that helps to quickly evaluate the overall quality of drinking waters, show a good drinking water quality in Rome (Fe is the only element to be considered critical) whereas in Florence the situation is influenced by Al levels. No relevant differences are found among Rome and Florence water composition and other Italian and world potable waters.This study can be considered a useful reference for studies aimed to highlighting toxicological, nutritional and environmental disease patterns.  相似文献   

14.
We present a global strategy for molecular simulation forcefield optimization, using recent advances in Efficient Global Optimization algorithms. During the course of the optimization process, probabilistic kriging metamodels are used, that predict molecular simulation results for a given set of forcefield parameter values. This enables a thorough investigation of parameter space, and a global search for the minimum of a score function by properly integrating relevant uncertainty sources. Additional information about the forcefield parameters are obtained that are inaccessible with standard optimization strategies. In particular, uncertainty on the optimal forcefield parameters can be estimated, and transferred to simulation predictions. This global optimization strategy is benchmarked on the TIP4P water model. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
A proficiency testing (PT) scheme was developed for a limited number of analytical laboratories participating in the analysis of natural water in Israel. Three fit-for-intended-use reference materials (RMs) were prepared for a pilot PT from natural water: RM-blank and two in-house reference materials (IHRMs) with seven analytes fortified to achieve different levels of analyte concentrations. The measurands for the PT participants were the traceable spike values certified in the IHRMs, i.e., added mass concentrations of the analytes. The RM-blank and IHRMs were found to be homogeneous and stable over 11 days, the time necessary for the experimental part of the PT. The RMs were distributed to the PT participants as unknown test items similar to routine samples. The test results were evaluated using their deviations from the IHRM-certified values. Eight Israeli laboratories took part in the interlaboratory comparison. Individual laboratory performance and metrological compatibility of the PT results of the participants, as a local group of laboratories, were evaluated for every analyte.  相似文献   

16.
The 2018 report by the Intergovernmental Panel on Climate Change (IPCC) details how rapidly Earth's climate is changing due to rising atmospheric CO2 concentrations. Maintaining a recognizable terrestrial ecosphere over the next eighty years will require, by 2030, a decrease in global CO2 emissions by 45% from their 2010 levels, with zero net global emissions by 2050. However in 2018, global CO2 emissions were 112% of 2010 levels. Our interest lies in the use of sunlight to efficiently recycle CO2 from a waste combustion product, together with water vapor, into hydrocarbon fuels that can be readily stored, transported and used within the current energy infrastructure. While the concept is intriguing until 2019 such a solar fuels technology has been limited by the vanishingly small CO2-to-fuel photoconversion efficiencies achieved. Recently there has been a significant advance in CO2 to fuel photoconversion efficiencies with researchers achieving, in an unoptimized system, over a 6 h period, a Joule (sunlight) to Joule (fuel) photoconversion efficiency of 1%. Just as photovoltaics went from niche market devices of low photoconversion efficiency to highly efficient devices enabling a global industry, such a sunlight-to-fuel photoconversion efficiency suggest utility-scale implementation of a sunlight-powered recycled-CO2 to hydrocarbon fuel technology is realistically achievable in the near future. With an aim towards enabling significant advances in the field, leading to translation of the technology from laboratory to industrial-scale application, we examine what we believe are the key opportunities for achieving significant advances in sunlight-to-fuel photoconversion efficiencies.  相似文献   

17.
5‐phenylazo‐8‐hydroxyquinoline and its newly metal complexes with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions have been prepared and characterized using different analytical techniques. The complexes are distorted octahedral binding via one oxygen and nitrogen atoms of the ligand; two/three coordinated water molecules. 1:1 complexes contain one chloride or OH ion and some complexes have one or two water of hydration whereas 1:2 complexes contain only two coordinated water molecules in their coordination spheres. All complexes behave as neutral in dimethylformamide (DMF). The electronic structure and non‐linear optical parameters NLO of the complexes (ML and ML2) are investigated theoretically at the B3LYP/GEN level of theory. The geometries of the studied complexes are non‐planner. The calculated EHOMO and ELUMO energies of the studied complexes were used to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The total dipole moment (μtot), static total and anisotropy of polarizability (α, Δα) and static first hyperpolarizability (β) values were calculated and compared with urea as a reference compound. The studied complexes show promising optical properties.  相似文献   

18.
Vitamin D deficiency is being recognized as a global issue and has been implicated in many health issues. Hence, there is an increased interest in developing sensitive, reproducible, and non-invasive assays to measure Vitamin D levels. This study aimed to apply a sensitive liquid chromatography-mass spectrometric assay to hair samples to develop and validate a clinical assay to provide a quarterly average level of vitamin D in one test. Hair samples were collected from 70 male university students/young adults and pulverized/sonicated in methanol/water for 2 h to extract Vitamin D metabolites. A sensitive liquid chromatographic-mass spectrometric assay was employed to quantitate vitamin D and metabolites. Of the eight Vitamin D and metabolites screened, only the primary, clinically significant form of vitamin D (25OHD3) was detected and quantified in hair samples in the range of 17–1541 pg/mg. One-third of the hair samples (21 out of 70) had Vitamin D levels below the LLOD of the assay (10 pg/mg). The mean and standard deviation values for hair (25OHD3) were 276.7 ± 329.9, respectively. This pilot study reveals the potential of the vitamin D hair test in clinical assays as a complementary test to a vitamin D blood test, which would provide a quarterly average.  相似文献   

19.
The concentrations of Cd, Cr, Cu, Ni, Pb and Zn were determined in the water and surface sediments from the Henan reaches of the Yellow River. Twenty-three sampling sites along the Yellow River and its tributaries were selected. Generally, metal concentrations were found to decrease in sequences of Zn > Cu > Pb > Cr > Ni > Cd in water and Zn > Cr > Pb > Ni > Cu > Cd in sediments. High levels of metal concentration were determined at a few stations of the river and its tributaries, such as Yiluo River, Si River and Qin River. The pollution of the Yellow River by Cd, Cr, Cu, Ni, Pb and Zn can be regarded as much higher compared to the background values, US EPA criteria (1999) and China water quality criteria (2002). For sediments, metal levels except Pb did not significantly exceed the average shale levels and backgrounds in several countries including China. Data analysis manifests that positive correlations were found between Cu, Ni and Zn in water, and Pb, Ni, Zn and Cr in sediments. The Pearson correlation coefficient analysis and Cluster analysis were provided to assess the possible contamination sources. The results indicate a general appearance of serious pollution along the banks of the Yellow River. The wastewaters discharged by the mine plants, smelter plants, power plants, battery plants, tannery plants, etc., and sewage inputs from the cities along the river banks may be the sources of metals.  相似文献   

20.
Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号