首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
基于光谱技术的水稻稻纵卷叶螟受害区域检测   总被引:8,自引:0,他引:8  
利用光谱技术探索了水稻稻纵卷叶螟虫害的检测。通过分析田间水稻稻纵卷叶螟受害区和对照区冠层反射光谱和一阶微分光谱特征差异发现,可见光区(400~700 nm),550 nm附近中度受害水稻冠层反射率明显低于对照冠层反射率值,重度受害水稻冠层反射率则高于对照区冠层反射率;水稻受害时,叶片受损及干枯导致叶绿素含量降低,对红光波段(600~700 nm)的吸收减小。近红外区(750~770 nm)范围内,受害水稻冠层反射光谱曲线均不同程度出现"尖峰"波动,且光谱曲线红边拐点发生"蓝移"。通过构建样本总体修正曲线,提供了直观判别广域水稻是否受稻纵卷叶螟虫害侵扰的依据。进一步探讨稻纵卷叶螟受害区定性检测参数发现,利用NIR-NDVI特征可以有效地区分对照区和受害区区域,经验证,准确率达70%。  相似文献   

2.
分析炭疽病侵染后油茶冠层的可见-近红外光谱特征,探索建立病害胁迫下油茶冠层叶片叶绿素含量的预测模型。通过实地调查病情指数,获取不同病害程度的油茶冠层叶片光谱数据及其叶绿素含量,并对光谱数据进行了一阶微分与滑动平均滤波相结合的预处理,再通过光谱数据重采样,提取敏感波段建立了叶绿素含量的BP神经网络预测模型。结果表明:(1)随着病情的加重,油茶冠层光谱可见光区域的反射峰和吸收谷逐渐消失;红光到近红外陡峭的红边被逐渐拉平;在近红外区域,健康油茶的光谱反射率明显大于感病油茶的光谱反射率。(2)微分光谱484~512,533~565,586~606和672~724nm四个波段是叶绿素吸收和反射的敏感波段。(3)以敏感波段为输入变量建立的BP神经网络模型,其计算出的预测值与观测值之间的相关系数r和均方根误差分别为0.992 1和0.045 8。因此,利用可见-近红外光谱技术预测炭疽病侵染后油茶叶片叶绿素含量是可行的。  相似文献   

3.
冬小麦生长期光谱变化特征与叶绿素含量监测研究   总被引:10,自引:0,他引:10  
在分析冬小麦生长期冠层反射光谱和叶绿素含量变化特征的基础上,对二者之间的相关性进行了研究。表明从小麦拔节期开始,冠层反射光谱在可见光区(400~750 nm)的反射率先降低而后升高,以孕穗期反射率最低;在近红外区(750~1 000 nm)冠层反射率由拔节期至孕穗期反射率降低,然后开始上升。扬花期上升至最高点后又开始下降,直至乳熟期降至最低。冬小麦冠层反射率与叶绿素含量相关分析结果表明,冬小麦拔节期和孕穗期二者呈正相关,扬花期二者呈负相关;整个生长期中,孕穗期可见光区552 nm处反射率与叶绿素含量相关系数最大达0.89。依据冬小麦生长期冠层反射光谱红边拐点位置,分别建立了拔节期叶绿素含量线性检测模型(R2=0.92)和孕穗期二项式模型(R2=0.91),用于冬小麦叶绿素含量的无损检测是可行的。  相似文献   

4.
不同施氮水平下玉米冠层光谱反射特征分析   总被引:9,自引:0,他引:9  
通过田间试验研究了玉米不同生长期冠层光谱反射率的变化特征,分析了不同施氮水平下可见光区冠层光谱反射率的差异。研究结果表明:受作物群体光和能力的影响,玉米可见光区冠层反射光谱在拔节期达最高点,随后持续降低; 近红外区,苗期反射率最低,在拔节期达最高点,喇叭口期有所降低而在开花吐丝期得到回升,进入灌浆期后又下降。不同施氮水平下,拔节期随施氮水平的增加,叶绿素的强吸收带(430~450和640~660 nm)玉米冠层反射曲线呈下降排列,但在550 nm附近反射率R正常>R偏低>R偏高; 喇叭口期偏低施氮区的冠层反射率在可见光区明显高于其它施氮水平,且偏高和正常施氮区域内光谱反射强度基本相同,显示过量施肥并不会促进作物生长。分析玉米生长期间不同施氮水平下光谱反射率的差异,对监测玉米生长状况,指导田间施肥具有重要的现实意义。  相似文献   

5.
不同地类春小麦拔节期冠层光谱与叶绿素差异研究   总被引:1,自引:0,他引:1  
为实现对不同地类春小麦叶绿素含量的无损估测,通过分析春小麦冠层光谱与叶绿素含量的相关性,以及对其红边拐点位置与叶绿素含量做回归分析,分别建立了水浇地和旱地春小麦叶绿素含量估测模型并检验了模型精度。结果表明: (1) 拔节期水浇地和旱地春小麦叶绿素含量差异较大,且前者明显大于后者。虽然各地类春小麦光谱反射率与叶绿素含量均有很好的相关性,但旱地春小麦的相关性在可见光和近红外波段均低于水浇地。(2)在可见光范围,旱地春小麦冠层光谱反射率高于水浇地,而在近红外区则相反。阴坡地由于土壤水分高,春小麦长势较好,冠层光谱特点与水浇地差异不大。(3)建立的不同地类春小麦反射光谱红边拐点位置与叶绿素含量的监测模型表明,水浇地春小麦叶绿素含量的监测可用线性模型,预测精度达94.06%。而旱地则宜用二项式模型,预测精度为97.15%,比其线性模型高10.48%。  相似文献   

6.
可见与近红外波段光谱反射率数据库是颜色科学与技术和遥感目标地物分类识别领域等研究与应用的基础数据。主成分分析(PCA)在光谱数据分析、光谱重建、高光谱数据降维以及遥感图像分类等方面有广泛应用。测量并建立了云南公园常见绿化植物柳树、樟、红花檵木、蓝花楹等48种植物150条叶片从可见光到近红外波段光谱反射率数据库,波长范围400~1 000 nm、间隔4 nm。并且分别对可见与可见到近红外两种波段范围进行PCA研究。结果表明:不同植物叶片按照红、绿、黄相同色相的光谱反射率曲线基本相似;但对于同一种植物,在可见光波段400~700 nm,因为体内叶绿素、叶黄素、叶红素和花青苷含量的不同,光谱反射率曲线有较大的差异;在近红外波段700~1 000 nm,所有植物叶片光谱反射率仅仅是大小不同,而同一植物光谱反射率基本不随波长变化。PCA分析表明:在可见光和可见与近红外波段前三个主成分的累积贡献率分别达到98.62%和94.97%。数据库及其PCA分析结果将为自然物体光谱重建、多光谱成像技术和遥感目标地物分类识别等领域应用提供支撑。  相似文献   

7.
不同于传统被动光学传感器,高光谱激光雷达发射主动式全波段高斯脉冲激光,和植被叶片表面相互作用后,不同波段后向散射强度返回至接收器并被记录下来。以往的高光谱激光雷达植被叶片反射特性研究只聚焦于零度角入射的情况,对多入射角方向反射光谱特性以及方向反射特性对叶片叶绿素含量估算带来的误差尚未进行过深入研究。利用实验室研发的32波段高光谱激光雷达获取了不同入射角下的植被叶片反射光谱,对高信噪比波段下植被叶片的复杂方向反射特性进行了深入分析,随后选择光谱指数研究了高光谱激光雷达测量条件下植被方向反射特性对叶绿素含量反演的影响。结果表明,(1)高光谱激光雷达植被叶片回波强度随入射角增大逐渐降低,但二向反射率因子并不逐渐减小,在可见光和近红外波段,二向反射率因子随入射角增大分别呈现出两种不同形状特征,可见光波段反射率因子最大值出现在0°~10°,近红外波段最大值出现在60°,反射率因子最小值均出现在45°处,最大和最小反射率因子间可差0.1左右,可见光和近红外波段10°~60°内二向反射率因子均呈现先减小后增大的趋势;(2)通过对不同入射角下光谱指数与叶绿素含量的回归分析发现,方向反射特性对反演精度有...  相似文献   

8.
基于Sentinel-2A影像的玉米冠层叶绿素含量估算   总被引:5,自引:0,他引:5  
农作物叶片中的叶绿素通过吸收光能参与光合作用产生化学能,及时、准确地估算叶绿素含量对于农作物长势、养分含量监测、品质评价和产量估算具有重要意义。Sentinel-2卫星的重访周期为5 d,空间分辨率为10 m,具有13个光谱波段,其中包括三个波宽仅为15 nm对叶绿素含量变化敏感的红边波段,是叶绿素含量估算的理想数据源。植被指数是基于农作物在不同波段的反射特性,通过不同波段组合方式刻画长势和叶绿素含量的差异,可用于大区域范围内的玉米冠层叶绿素含量快速、精确估算。以Sentinel-2A影像为数据源,开展基于多种植被指数的玉米冠层叶绿素含量估算方法研究。课题组于2016年8月6-11日在河北省保定市(115°29′-116°14′E,39°5′-39°35′N)进行玉米冠层叶绿素含量的实地测量,并在每个采样位置上采用中绘i80 智能RTK(real-time kinematic)测量系统进行定位。Sentinel-2A影像预处理工作包括几何校正、辐射定标和大气校正,其中大气校正使用Sen2Cor模型和SNAP模型。首先,基于预处理后的Sentinel-2A遥感影像,分别计算CIgreen(green chlorophyll index), CIred-edge(red-edge chlorophyll index), DVI(difference vegetation index), LCI(leaf chlorophyll index), MTCI(MERIS terrestrial chlorophyll index), NAVI(normalized area vegetation index), NDRE(normalized difference red-edge), NDVI(normalized difference vegetation index), RVI(ratio vegetation index), SIPI(structure insensitive pigment index)植被指数。然后,建立样方位置上实测叶绿素含量与各植被指数的统计关系,从而构建玉米冠层叶绿素含量估算模型,并以野外实测玉米冠层叶绿素含量为依据,对基于各植被指数的估算结果进行精度评价。最后,利用筛选出的最优叶绿素含量估算模型,估算研究区内的玉米冠层叶绿素含量。研究的目标为:(1)通过比较分析,构建合适的玉米冠层叶绿素含量估算模型,估算精度以决定系数R2、均方根误差RMSE以及相对误差RE作为评价指标;(2)确定最优波段组合方案:在红边波段中选择与可见光、近红外波段组合效果更优的波段组合方案;(3)确定参与植被指数计算的红边波段的最优数量。精度评价结果表明:(1)选用的植被指数与玉米冠层叶绿素含量呈多项式拟合关系,其中使用红边波段计算的植被指数的估算结果明显优于未使用红边波段的估算结果;红边波段引入后明显提高了可见光、近红外波段对叶绿素含量的拟合的精度,CIgreen(560, 705)指数比CIgreen(560, 842)的回归模型R2提高0.516,红边波段参与计算的DVI相对于RVI来说,估算结果更稳定。(2)对于不同的植被指数,参与运算的Sentinel-2A影像的两个红边波段,估算精度的提高程度不同。对于可见光波段参与计算的植被指数来说,在红边波段1(中心波长为705 nm)的估算精度较高,如LCI,CIgreen,DVI和RVI等;对于近红外波段参与计算的植被指数来说,在红边波段2(中心波长为740 nm)的估算精度较高,如CIred-edge,NDRE和NAVI等。(3)对于Sentinel-2A影像来说,两个红边波段共同参与叶绿素含量估算时能取得最高的的估算精度。选用的植被指数中,MTCI(665, 705, 740)指数与玉米冠层叶绿素含量估算精度最高,回归模型拟合精度R2为0.803,模型验证R2为0.665,RMSE为3.185,相对误差RE为4.819%。MTCI(665, 705, 740)指数计算中使用了两个红边波段,突出红边波段反射率差值变化,与玉米冠层叶绿素含量表现出很好的相关性。最后,利用优选出的基于MTCI指数的叶绿素含量估算模型,对研究区范围内的叶绿素含量进行估算并完成空间制图。  相似文献   

9.
消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测   总被引:2,自引:0,他引:2  
便捷可靠的作物营养诊断是作物科学施肥管理的基础,也是精准农业的核心。叶绿素含量是作物氮营养含量的重要指标。以水稻叶片为研究对象,用改造后的普通单反相机搭载滤波片的方式拍摄叶片的可见光和中心波长为650,680,720,760,850和950 nm多个波段的近红外图像,获取不同波段的相对反射率值,通过可见光与多个近红外波段结合的回归分析与比较,筛选出精度较高且稳定的模型。经过对比相机三个成像通道,R通道与叶绿素含量(SPAD值)的相关性要高于B和G通道。实验结果表明,植被指数GVI最能反映作物的生长状况,近红外波段760 nm对SPAD值的预测效果最好,最小二乘支持向量机法结合多个植被指数建模的预测精度R2为0.831 4,取得了较为理想的效果。同时使用高光谱成像仪采集水稻叶片的高光谱影像,对比消费级近红外相机成像方式下与高光谱成像方式下得到的植被指数多因子预测模型精度,两者相当。实验证明消费级近红外相机能够获得与高光谱成像仪相近的叶绿素含量估测结果。  相似文献   

10.
植物生长状况是反映环境变化的重要指标,在全球环境变化格局下,研究多环境因子及交互作用对植物的影响尤为重要。为探究植物光谱特征响应环境变化,从而探究环境变化对植物生长状况的影响,同时实现遥感对植物的监测,该研究以东北地区优势树种蒙古栎为研究对象,分析研究了不同光周期、温度和氮沉降交互作用引起的蒙古栎展叶盛期冠层光谱反射特征变化。基于大型人工气候室模拟试验,设置3个温度,3个光周期和2个氮沉降交互处理,每个处理4个重复。当蒙古栎进入展叶盛期时,每个处理选择差异较小的三个重复,使用FieldSpec Pro FR 2500型背挂式野外高光谱辐射仪测量光谱反射率。对不同处理的蒙古栎冠层光谱反射率进行分析,选取NDVI(归一化植被指数)、Chl NDI(归一化叶绿素指数)和PRI(光化学反射指数)3个常用的光谱指数作为辅助分析,同时计算一阶导数光谱以得到红边斜率、红边位置、红边面积等参数。不同处理展叶盛期的蒙古栎光谱反射率趋势大体一致,均符合植物特有的光谱反射特征,在350~680 nm范围内有一个小的波峰,680~750 nm反射率显著上升,750 nm后进入反射平台。结果表明:(1)光周期对于蒙古栎冠层的光谱反射率没有明显的影响;(2)增温会减小蒙古栎冠层在350~750 nm波段处的光谱反射率;(3)施氮会导致蒙古栎展叶盛期350~750 nm波段和750~1 100 nm波段处的光谱反射率降低;(4)增温和施氮的交互作用会显著减小蒙古栎的光谱反射率;(5)通过一阶导数光谱可清晰地指示植物的红边特征。研究结果可为物候变化的监测与影响因素分析提供理论依据。  相似文献   

11.
松萎蔫病是松属树种的一种毁灭性病害,小范围甚至单木水平的森林病虫害的早期诊断对森林资源保护与可持续发展尤为重要。以感染松萎蔫病的黑松为研究对象,通过采集不同感病时期的黑松冠层的多角度光谱数据,分析不同特征波段的方向反射特征,总结不同感病程度黑松的冠层特征波段反射率的变化规律。结果显示:(1)在俯视观测时,在主平面方向的后向散射方向的反射率大于前向散射方向的反射率,并且在后向散射方向,四个波段的四个感病时期约在40°的观测天顶角出现热点效应;无论在主平面还是主垂面,蓝光波段(450 nm)与近红外波段(810 nm)的黑松冠层0°天顶角反射率呈现出感病初期>健康>感病中期>感病末期的变化规律,红光波段(680 nm)和绿光波段(560 nm)的黑松冠层0°天顶角反射率呈现出健康≈感病初期>感病中期≈感病末期的变化规律。在所有方位角,冠层反射率随着观测天顶角的增加而增大。(2)在仰视观测时,在主平面方向的后向散射方向的反射率小于前向散射方向的反射率,并且在方位角为0°时,4个波段反射率都是较大的;无论在主平面还是主垂面,蓝光波段(450 nm)绿光波段(560 nm)和红光波段(680 nm)的冠层反射率的大小呈现出感病初期>健康>感病末期>感病中期的变化规律,近红外波段(810 nm)冠层反射率的大小呈现出感病初期>健康>感病中期>感病末期的变化规律;在所有方位角,冠层反射率随着观测仰角的增加而减小。(3)黑松冠层反射光谱在俯视和仰视观测时,各个特征波段的二向性反射率的各向异性最强的是主平面,最弱的是主垂面,且主垂面的前向和后向反射率会呈现对称性,即“镜面反射”;各个特征波段在感病末期,黑松冠层反射率随观测天顶角的变化幅度较大,其他几个时期反射率随观测天顶角的变化幅度不明显。研究结果显示的树冠的不同角度的波段反射方向性特征为以后不同尺度的无人机监测的准确性与可靠性奠定基础,也为发展近地面便携式森林病虫害实时监测系统打下了基础。  相似文献   

12.
倒伏胁迫下作物的冠层光谱响应机理解析,是大范围作物倒伏灾情遥感监测的重要基础。倒伏胁迫直接改变了遥感光谱探测视场内的可视茎叶穗比率,通过解析冠层光谱与可视茎叶穗比率间的关系,探索不同强度的倒伏胁迫下水稻可视茎叶穗组分变化规律及其与冠层光谱响应规律,为大范围作物倒伏灾情遥感监测提供理论支持。以2017年江苏省兴化市、大丰区的实发倒伏水稻为研究对象,在野外观测实验的支持下,分析不同倒伏强度的倒伏水稻冠层光谱变化规律,并对不同倒伏强度下的冠层可视茎叶穗比率与倒伏角度进行相关性分析,筛选能有效表征倒伏强度的敏感农学参数,采用灰色关联分析法构建倒伏水稻冠层光谱指标与敏感农学参数之间的响应模型,实现水稻倒伏灾情的光谱诊断,并利用野外实测样本评价诊断精度。研究结果表明,随着倒伏强度的加大,冠层光谱表现出规律性变化,红光波段与近红外波段响应较为明显,“红边”位置明显“蓝移”,且“红边”振幅与“红边”面积增大,说明红光波段和近红外波段对水稻倒伏胁迫强度较为敏感;冠层可视叶茎比存在随倒伏强度增加而减少的规律,其相关性可达0.715,说明倒伏后的水稻冠层可视叶茎比对于倒伏强度有着较好的表征能力;通过对可视叶茎比与冠层高光谱反射率进行相关性分析,分别于红光波段和近红外波段内筛选出698与1 132 nm作为敏感波段,进而计算特征植被指数;利用灰色关联分析构建了基于特征植被指数的水稻可视叶茎比光谱响应模型,检验样本的决定系数为0.635,以可视叶茎比预测结果进行倒伏灾情等级划分的精度达到82%。因此,倒伏发生后水稻冠层的茎、叶、穗等组分在光谱探测器视场中的贡献比例发生了规律性改变,茎、叶、穗本身光谱反射率差异和视场内比率差异直接反映于倒伏水稻冠层光谱差异,其中可视叶茎比能有效表征受倒伏胁迫的水稻群体结构变化,与倒伏强度具有较好的响应关系,不同倒伏强度的可视叶茎比与水稻冠层光谱之间的响应规律可以有效区分倒伏灾情等级,有助于为区域尺度的水稻倒伏灾情遥感监测提供先验知识。  相似文献   

13.
荒漠地区由于气候干燥,降水稀少,水分常成为制约植被生长的因素之一,水分胁迫对植物长势和产量的影响比任何其他胁迫都要大。随着高光谱技术的发展,国内外已有众多学者利用高光谱数据研究植被遭受胁迫作用,然而这些研究对象多集中于甜菜、棉花、玉米、水稻等作物,针对干旱区盐生植被遭受胁迫作用的研究较少。梭梭作为荒漠、半荒漠地区的典型盐生植被之一,具有极高的经济和生态效益。选择梭梭作为研究对象,培育一年生梭梭,并设置三个水分梯度,形成受不同水分量胁迫的梭梭。使用原始光谱、红边位置参数,结合植被指数及二维相关光谱研究其叶片光谱特征,为干旱区利用高光谱遥感监测盐生植被提供借鉴。结果表明:(1)分析梭梭叶片反射光谱曲线发现,在可见光至中红外各波段范围内,受不同水分量胁迫作用的梭梭叶片光谱反射率有显著差异。在可见光(350~610 nm)波段,各水分处理的梭梭叶片反射率依次为100 mL>500 mL>200 mL,这是由于100和200 mL水分促进梭梭内部叶绿素合成,使该波段反射率降低,而过多的水分(500 mL)对梭梭内部的叶绿素合成没有更大的促进作用。在红光区(611~738 nm),随着水分量的增多,受不同水分量胁迫的梭梭叶片光谱反射率依次减小。在738~1 181和1 228~1 296 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:200 mL>100 mL>500 mL;在1 182~1 227 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:100 mL>200 mL>500 mL。这是由于植被细胞结构对近红外区域的反射率影响较大,因而受不同水分胁迫作用的梭梭叶片光谱反射率有显著差异。在1 300~1 365和1 392~1 800 nm波段,受各水分胁迫作用的梭梭叶片反射率为:100 mL>200 mL>500 mL。这表明在500 mL水分胁迫量范围内,水分越多,叶子的细胞液、细胞膜对水分的吸收能力越强,使得反射率下降。通过对原始光谱求取一阶导数并提取红边位置参数发现,各水分处理下的梭梭叶片一阶微分光谱曲线中红边位置未发生移动。这是由于梭梭在长期的干旱环境影响下,形成了特殊的适应机制,水分对其红边位置影响不敏感。(2)选取若干植被指数分析各水分处理下的梭梭光谱指数变化。当水分胁迫量由100 mL增至200 mL时,WI/NDWI,MSI和NDII指数值变化显著,可用于研究水分胁迫下梭梭的光谱特征。(3)使用二维相关光谱技术分析受各水分胁迫作用的梭梭光谱特征,得出在100 mL水分胁迫下,在536,643,1 219和1 653 nm波段处,吸收峰对水分的微扰敏感;在200 mL水分胁迫下,在846和1 083 nm波段处,吸收峰对水分的微扰敏感;在500 mL水分胁迫下,在835和1 067 nm波段处,吸收峰对水分的微扰敏感。总之,在近红外波段,与100 mL水分量相比,梭梭受200和500 mL水分量胁迫时,吸收峰对水分的微扰敏感度上升。由100 mL水分胁迫下梭梭的二维同步相关谱图可知,1 044和1 665 nm,1 072和903 nm,903和1 264 nm,1 230和1 061 nm波段处形成正交叉峰,表明这些波段处光谱强度随水分的干扰同时变化。  相似文献   

14.
晚播条件下基于高光谱的小麦叶面积指数估算方法   总被引:1,自引:0,他引:1  
利用高光谱遥感技术,分析晚播条件下小麦叶片与冠层模式光谱特征和叶面积指数(LAI)的变化规律,建立了适用于晚播小麦的叶面积指数估算方法。研究结果表明:(1)从红光和蓝紫光420~663 nm波段提取的叶绿素光谱反射率植被指数(CSRVI)与旗叶SPAD值做相关性分析,结果表明正常播期和晚播处理在叶片模式的相关系数分别为0.963*和0.997**,达显著和极显著水平。(2)利用相关性分析,得出两个播期处理的LAI与SPAD值相关系数分别是0.847*和0.813*,均达到显著水平。SPAD值与LAI及CSRVI指数均具有相关性,可以用CSRVI指数建立LAI的估算模型。(3)对叶片模式和冠层模式光谱曲线特征分析得出,叶片模式中在680~780 nm处的反射率呈现陡升趋势,在可见光波段的446和680 nm和近红外波段的1 440和1 925 nm处各有两个明显的吸收波谷,在540~600,1 660和2 210 nm波段处有两个明显的反射波峰;三种冠层模式中60°模式下的光谱反射率整体表现为最高。(4)将各波段反射率与叶面积指数做相关性分析得出在可见光波段范围内,光谱反射率与LAI总体呈现负相关性,500~600 nm处有一个波峰。(5)将三种冠层模式下(仪器入射角度分别与地面呈30°,60°和90°夹角)的等效植被指数与LAI做相关性分析得出:60°冠层模式下八种植被指数与正常播期LAI的相关性均未达显著水平,比值植被指数(RVI)、归一化植被指数(NDVI)、增强型植被指数(EVI)、再次归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、修改型土壤调整植被指数(MSAVI)的等六种植被指数与晚播条件下的LAI具有显著和极显著相关关系;90°冠层模式下CSRVI指数与正常播期处理的LAI具有显著相关关系,NDVI指数与晚播处理的LAI具有显著相关关系;30°冠层模式下的八种植被指数与两播期处理的LAI的相关性均未达显著水平。综合分析CSRVI指数、NDVI指数的相关性最高,这两种指数最具有估算LAI的潜力。(6)通过三种冠层模式所计算的植被指数估算LAI模型,结果表明,正常播期条件下,其最佳估算模型是90°冠层模式CSRVI指数所建立的线性模型Y=-7.873 6+6.223 8X;晚播条件下的最佳模型是60°冠层模式RDVI指数所建立的幂函数模型Y=30 221 333.33X17.679 1,两个模型的决定系数R2分别为0.950*和0.974**。研究表明试验中所提取的CSRVI指数能够反映旗叶叶绿素含量,可以通过光谱仪器的叶片模式对小麦生育期内叶绿素含量进行监测;通过冠层模式计算的CSRVI指数和RDVI指数所建立的LAI估算模型可以对小麦的LAI进行无损害观察。  相似文献   

15.
基于光谱波段自相关的水稻信息提取波段选择   总被引:2,自引:0,他引:2  
通过大田试验,使用ASD光谱仪测量水稻不同生育期的冠层光谱,将光谱以10 nm为步长进行合并,再将不同日期光谱的所有波段组合计算相关系数平方(R2),生成R2矩阵,并绘制R2分布图。根据R2越大,光谱波段之间冗余信息越多,R2越小,水稻光谱波段信息含量越多的原则,在所有测量日期中选择出前100个R2最小值对应的波段,将这些波段进行统计分析。结果表明,可见光区域各个波段之间和红外(近红外和短波红外)区域各个波段之间都含有大量冗余信息。水稻信息量丰富的波段主要集中在可见光的长波波段,红边波段,近红外第一和第二峰值波段,以及短波近红外第一峰前区(1 530 nm附近)和第二峰值区(2 215 nm附近)。比较水稻与其他植被对于最优波段的选择,400~410,630~650和1 520~1 540 nm三个波段区间表现为水稻信息提取较为独特的波段。  相似文献   

16.
温室作物长势的光谱学诊断方法研究与仪器开发   总被引:2,自引:1,他引:2  
利用便携式光谱辐射仪测量了温室栽培黄瓜叶片的光谱反射率,相关分析结果表明:527 和762 nm是可用来预测叶片氮素含量的敏感波长。利用敏感波长处的反射率,生成了归一化颜色指数(NDCI),并建立了基于NDCI的黄瓜叶片氮素含量预测模型,模型的相关系数达到了0.881。在上述研究的基础上,开发了一种基于光导纤维的便携式作物长势诊断仪。仪器主要包括四个部分:反射光采集系统、测光单元、信号调理电路和数据采集系统。从作物表面反射的自然光经过光纤传输至光电转换单元,经滤光后得到所需要的敏感波长,光电器件将光信号转变为电信号,然后根据预测模型判别作物的生长状态。标定试验结果表明,仪器所测的光谱数据与作物叶绿素含量之间存在显著的线性关系。  相似文献   

17.
南疆地区沙尘多、灰尘大,枣树叶片表面经常覆盖一定程度的粗颗粒度沙尘,为了有效去除沙尘、灰尘在枣树叶片水分光谱测量过程中产生的散射噪声和基线漂移,研究一种适用于风沙较大地区的枣树叶片水分含量的快速检测方法,以不同灌溉梯度下的枣树叶片为研究对象,通过近红外光谱仪获取120个叶片样本的1 000~1 800 nm的光谱数据,并同步测量叶片水分含量,采用归一化、移动窗口平滑、SavitZky-Golay(SG)卷积平滑、SG求导、标准正态变量校正(SNV)和多元散射校正(MSC)等方法对原始光谱进行预处理,分析对比不同方法对散射噪声的处理能力,采用偏最小二乘回归分析方法筛选了敏感波段和建立预测模型。实验结果表明,枣树叶片水分含量强吸收峰为1 443 nm,波谷为1 661 nm;归一化光谱并未消除1 000~1 400 nm波段的散射噪声;移动窗口平滑和SG卷积平滑并未改进光谱曲线,散射噪声仍然存在;SG导数光谱的光谱特征峰和特征谷明显左移,光谱曲线不够平滑,噪声明显;SNV和MSC方法具有较好的散射噪声消除能力。偏最小回归分析方法筛选特征波长的结果表明(设置筛选波长数量为5),基于原始光谱未筛选到1 443 nm的强波峰和1 661 nm的波谷附近的波段;基于归一化光谱在1 450 nm波峰附近筛选的波长有一定的偏差,在1 661 nm波谷附近的筛选的波长明显高于1 700 nm;基于移动窗口和SG卷积平滑光谱在1 443 nm具有一定的筛选能力,但并未筛选到1 661 nm附近的波长;导数光谱并未筛选到1 443和1 661 nm波段;SNV和MSC在波峰和波谷位置附近均筛选了敏感的光谱波段,其中MSC略优于SNV方法恰好在波峰和波谷位置,共筛选了1 002, 1 383, 1 411, 1 443和1 661 nm五个特征波段,也证明了MSC方法散射噪声和基线漂移处理能力最优,提高了敏感波长的筛选能力。偏最小二乘回归模型结果表明,不同预处理方法的RMSE值均较低,SNV和MSC方法改进了模型的预测结果,R2高于0.7,其中基于MSC方法的模型具有最高的R2和最低的RMSEP和RMSEPCV,R2=0.750 4,RMSEP=0.034 3,RMSECV=0.021 5,预测结果较优。证明MSC方法对沙尘和颗粒度引入的散射噪声具有较好的去除能力,可改进波长的筛选、提高预测模型精度,为南疆沙尘区的枣树叶片水分含量的无损检测提供了有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号