共查询到16条相似文献,搜索用时 62 毫秒
1.
研究了腐植酸溶液超声声化学降解过程中近紫外光谱在190-320 nm间的变化,证明超声波对腐植酸有明显的降解作用,并测定了降解过程中不同pH值条件下TOC的变化,对降解过程的自由基氧化历程进行了分析。 相似文献
2.
用荧光光谱分析仪测定了在超声作用下的铝酸钠Luminol溶液的荧光光谱.并对不同超声功率、不同组成的铝酸钠溶液的声致荧光光谱进行了研究,发现在超声空化时,铝酸钠Luminol溶液可以产生声致荧光;在相同功率的超声波作用下,浓度较高,铝酸钠溶液中Na2O/Al2O3摩尔比较低的铝酸钠溶液的声致荧光强度较弱.同时讨论了声致荧光与超声强化铝酸钠溶液结晶过程的关系. 相似文献
3.
本文以硝基苯模拟废水为研究对象,探讨了超声波与电化学协同作用降解硝基苯的实验情况。考察了处理时间、处理温度、硝基苯初始浓度、pH值、电解电压等因素对硝基苯降解率的影响。实验结果表明:随着作用时间增加,硝基苯的降解率升高;温度高于40℃时,硝基苯的降解率随温度的升高而降低,低于40℃时,硝基苯的降解率随温度的升高而增大;硝基苯的降解率随电压的升高而增大;酸性条件有利于硝基苯的降解;硝基苯初始浓度越大降解率越高。 相似文献
4.
本实验采用纳米级的二氧化钛,对甲基橙溶液进行了紫外光催化氧化处理,探讨了pH的影响和添加Fe3+的效果及反应动力学方程,结果表明,采用UV/O3/TiO2工艺对其进行处理,pH4-5时,10W紫外灯光照60min,CODcr去除率达84%,脱色率达96%以上。添加Fe3+,对溶液的催化降解速度提高不明显。动力学研究表明,CODcr降解速度对CODcr的浓度为一级反应。 相似文献
5.
近来研制成功了一种基于PC机、我们称为“THSAMM”型的多功能声显微镜。在PC机内插入采样率1GSPS的超高速A/D卡和信号产生和接收卡,利用软件完成信号检测、处理、显示功能。仪器工作频率为1-100MHz;在检测样品时,同时多层显示A、B、C扫描结果。根据声学理论、Marching Cube等值面抽取方法和OpenGL技术完成了三维数据的可视化处理,显示样品的内部三维结构。该系统已成功应用于多 相似文献
6.
基于Ritec-SNAP测量系统建立了声-超声技术实验系统,分析了在声-超声技术评价过程中用声信号的幅频特性及应力波因子表征复合结构界面粘接强度的可行性。用粘接层的固化过程模拟复合粘接板粘接强度的变化过程,以粘接层的固化时间作为粘接强度的间接表征参量,借助于已建立的实验系统对复合结构粘接强度的评价问题进行了实验研究。实验结果表明,应力波因子与反映界面粘接强度的粘接层固化时间呈单调对应关系,且不同固化时期的应力波因子存在明显的不同特性,表明用应力波因子评价复合结构的界面粘接强度具有可行性。 相似文献
7.
从强电场等离子体反应室结构、电介质材料及加工工艺等方面出发.研究了在建立强电场并把O2、H2O电离后在分子层次上加工成OH^ 、eaq^-(水合电子)等自由基的等离子体反应过程。用这种方法产生的自由基的浓度、产成量均能满足工程上的需要.达到绿色化学12条原则要求,从源头上解决了环境污染问题。着重研究了羟基治理烟气SO2的绿色资源化的新方法.在无吸收剂、催化剂条件下,仅在0.8s内就能把烟气中SO2、H2O和O2电离后在分子层次上加工成H2SO4。 相似文献
8.
介绍了在水处理中采用的液哨式、清洗槽式、变幅杆式、杯式、平行板、管型等声化学反应器的研究进展和应用现状。指出要在实际水处理工程中采用超声技术,必须尽快开展高效、大批量处理或流水式连续运行的声学反应器的基础研究与应用开发。 相似文献
9.
Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe 3O 4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe 3O 4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe 3O 4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe 3O 4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions. 相似文献
10.
This study was conducted to investigate the ultraweak delayed radiochemiluminescence (RCL) spectra, kinetics and spectroscopic properties of humic acids (HAs) after γ-radiation exposure (absorbed doses of 1−10 kGy, Co-60) in model systems. The kinetics and spectral distribution of RCL (340–650 nm) were measured using the single photon counting (SPC) method and cut-off filters. The intensity of fluorescence (λex=390, 440, 490 and 540 nm) covering the spectral range 400–580 nm was heavily dependent on the λex and slightly increased with the absorbed dose of γ-radiation. Absorption spectra (the range 240−800 nm) and color coefficients E2.6/4 and E4/6 of irradiated solutions indicated that post-radiative degradation/polymerization processes take place in the HA, changing their macromolecule size or properties. Comparison of FTIR spectra and elemental analysis proved an increased O and decreased C atoms in irradiated samples. The data indicate on the radiolysis-induced degradation of native HA into fulvic-like acids with higher hydrophilicity and lower molecular size. 相似文献
11.
In this paper,an ultrasound with frequency of 815 kHz was used to re-search the sonochemical yield in a small-size reverberation field by the methodof fluorescent spectrum analysis.There are two characteristics on the effect ofsonochemistry in the reverberation field:First,the cavitation threshold wasabout 0.3W/cm~2(it was 0.7W/cm~2 in travelling field);Second,when thesound intensity was larger than the threshold,the sonochemical yield increasedas the intensity increased and increased rapidly after the intensity was at1.69-2.13W/cm~2,so that there was a upturned point in the curve of the result(which would tend to saturation in the travelling field).The theoretical analysisshows that the reason of the threshold decrease is that the sound energy densitybecomes high in the reverberation field,and the upturned point results from thedisturbance of the radiation pressure on the liquid surface.Therefore,by exper-iment and theory this paper shows that a reverberation field has to be built forthe higher sonoche 相似文献
12.
Production of graphene by thermal annealing on copper foil substrates has been studied with different sources of carbon. The three carbon sources include humic acid derived from leonardite, graphenol, and activated charcoal. Hexagonal single crystalline graphene has been synthesized over the copper foil substrates by thermal annealing of humic acid, derived from leonardite, in argon and hydrogen atmosphere (Ar/H 2=20). The annealing temperature was varied between 1050 °C and 1100 °C at atmospheric pressure. Samples have been investigated using scanning electron microscope (SEM) and Raman spectroscopy. At lower temperatures the thermal annealing of the three carbon sources used in this study produces pristine graphene nanosheets which cover almost the whole substrate. However when the annealing temperature has been increased up to 1100 °C, hexagonal single crystalline graphene have been observed only in the case of the humic acid. Raman analysis showed the existence of 2D band around 2690 cm −1. 相似文献
13.
硝酸水溶液在超声波辐照下产生自由基及活性分子,通过加入辅助试剂或控制硝酸浓度可以选择性地利用这些活性组分氧化或还原铀、镎、钚等锕系元素。在核燃料后处理流程中可利用上述反应对锕系元素进行声化学调价,实现锕系元素调价的无盐化,在某些调价过程中甚至无需额外加入任何试剂。由于上述优点,声化学方法有望在后处理流程的钚、镎调价方面得到应用。 相似文献
14.
Humic acid, a natural ionic molecule, is rapidly being recognized as one of the crucial elements in our modern diets of the new century. A biophysical protocol utilizing circular dichroism (CD), steady state and time-resolved fluorescence for the investigation of the complexation of the humic acid to the staple in vivo transporter, human serum albumin (HSA), as a model for protein-humic substances, is proclaimed. The alterations of CD and three-dimensional fluorescence suggest that the polypeptide chain of HSA partially folded after complexation with humic acid. The data of fluorescence emission displayed that the binding of humic acid to HSA is the formation of HSA-humic acid complex with an association constant of 10 4 M −1; this corroborates the fluorescence lifetime measurements that the static mechanism was operated. The precise binding domain of humic acid in HSA has been verified from the denaturation of albumin, hydrophobic ANS displacement, and site-specific ligands; subdomain IIA (Sudlow's site I) was earmarked to possess high-affinity for humic acid. The observations are relevant for other albumin-humic substance systems when the ligands have analogous configuration with humic acid. 相似文献
15.
Medicinal chemistry has been benefited by combinatorial chemistry and high throughput parallel synthesis. The use of sonochemistry under controlled conditions has been proved beneficial for medicinal chemistry and drug discovery process since it dramatically reduces reaction times, from days or hours to minutes. In addition, sonochemistry synthesis provides higher yields, lower cost, easy workups and greater purity as compared to lower yields, tedious workups, longer reaction times, lesser purity and termination of many by-products in the conventional thermal methods. 相似文献
16.
In this review the phenomenon of ultrasonic cavitation and associated sonochemistry is presented through system parameters. Primary parameters are defined and considered, namely; pressure amplitude, frequency and reactor design; including transducer type, signal type, vessel-transducer ratio, liquid flow, liquid height, liquid temperature and the presence of a reflective plate. Secondary parameters are similarly characterised and involve the use of gas and liquid additives to influence the chemical and physical environments. Each of the parameters are considered in terms of their effect on bubble characteristics and subsequent impact on sonochemical activity. Evidence suggests that via parametric variation, the reaction products and efficiency may be controlled. This is hypothesised to occur through manipulation of the structural stability of the bubble. 相似文献
|