首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The iron complex of hemiporphycene, a molecular hybrid of porphyrin with porphycene, was incorporated into the apomyoglobin pocket to examine ligand binding ability of the iron atom in the novel porphyrinoid. Apomyoglobin was successfully coupled with a stoichiometric amount of ferric hemiporphycene to afford the reconstituted myoglobin equipped with the iron coordination structure of native protein. Cyanide, imidazole, and fluoride coordinated to the ferric protein with affinities comparable with those for native myoglobin. The ferrous myoglobin was functionally active to bind O(2) and CO reversibly at pH 7.4 and 20 degrees C. The O(2) affinity is 12-fold higher than that of native myoglobin while the CO affinity is slightly lower, suggesting decreased discrimination between O(2) and CO in the heme pocket. The functional anomaly was interpreted to reflect increased sigma-bonding character in the Fe(II)-O(2) bond. In contrast with 6-coordinate native NO protein, the NO myoglobin containing ferrous hemiporphycene is in a mixed 5- and 6-coordinate state. This observation suggests that the in-plane configuration of the iron atom in hemiporphycene is destabilized by NO. Influence of the core deformation was also detected with both the infrared absorption for the ferrous CO derivative and electron paramagnetic resonance for ferric imidazole complex. Anomalies in the ferric and ferrous derivatives were ascribed to the modified iron-N(pyrrole) interactions in the asymmetric metallo core of hemiporphycene.  相似文献   

2.
Sperm whale myoglobin, an oxygen storage hemoprotein, was successfully reconstituted with the iron porphycene having two propionates, 2,7-diethyl-3,6,12,17-tetramethyl-13,16-bis(carboxyethyl)porphycenatoiron. The physicochemical properties and ligand bindings of the reconstituted myoglobin were investigated. The ferric reconstituted myoglobin shows the remarkable stability against acid denaturation and only a low-spin characteristic in its EPR spectrum. The Fe(III)/Fe(II) redox potential (-190 mV vs NHE) determined by the spectroelectrochemical measurements was much lower than that of the wild-type. These results can be attributed to the strong coordination of His93 to the porphycene iron, which is induced by the nature of the porphycene ring symmetry. The O2 affinity of the ferrous reconstituted myoglobin is 2600-fold higher than that of the wild-type, mainly due to the decrease in the O2 dissociation rate, whereas the CO affinity is not so significantly enhanced. As a result, the O2 affinity of the reconstituted myoglobin exceeds its CO affinity (M' = K(CO)/K(O2) < 1). The ligand binding studies on H64A mutants support the fact that the slow O2 dissociation of the reconstituted myoglobin is primarily caused by the stabilization of the Fe-O2 sigma-bonding. The IR spectra for the carbon monoxide (CO) complex of the reconstituted myoglobin suggest several structural and/or electrostatic conformations of the Fe-C-O bond, but this is not directly correlated with the CO dissociation rate. The high O2 affinity and the unique characteristics of the myoglobin with the iron porphycene indicate that reconstitution with a synthesized heme is a useful method not only to understand the physiological function of myoglobin but also to create a tailor-made function on the protein.  相似文献   

3.
Myoglobin will be a good scaffold for engineering a function into proteins. To modulate the physiological function of myoglobin, almost all approaches have been demonstrated by site-directed mutagenesis, however, there are few studies which show a significant improvement in the function. In contrast, we focused on the replacement of heme in the protein with an artificial prosthetic group. Recently, we prepared a novel myoglobin reconstituted with an iron porphycene as a structural isomer of mesoheme. The bluish colored reconstituted myoglobin is relatively stable and the deoxymyoglobin reversibly binds ligands. Interestingly, the O2 affinity of the reconstituted myoglobin, 1.1 x 109 M-1, is a significant 1,400-fold higher than that of the native myoglobin. Furthermore, the unfavorable autoxidation kinetics show 7-fold decrease in rate for the reconstituted myoglobin relative to the native myoglobin, indicating the stable oxy-form against autoxidation. The net results come from the slow dissociation of the O2 ligand in the reconstituted myoglobin, koff = 0.11 s-1, because of the formation of strong hydrogen bond between His64 and negatively charged dioxygen. The present study indicates that the replacement of native heme with an artificially created prosthetic group will give us a unique function into a hemoprotein.  相似文献   

4.
In heme-based sensor proteins, ligand binding to heme in a sensor domain induces conformational changes that eventually lead to changes in enzymatic activity of an associated catalytic domain. The bacterial oxygen sensor FixL is the best-studied example of these proteins and displays marked differences in dynamic behavior with respect to model globin proteins. We report a mid-IR study of the configuration and ultrafast dynamics of CO in the distal heme pocket site of the sensor PAS domain FixLH, employing a recently developed method that provides a unique combination of high spectral resolution and range and high sensitivity. Anisotropy measurements indicate that CO rotates toward the heme plane upon dissociation, as is the case in globins. Remarkably, CO bound to the heme iron is tilted by ~30° with respect to the heme normal, which contrasts to the situation in myoglobin and in present FixLH-CO X-ray crystal structure models. This implies protein-environment-induced strain on the ligand, which is possibly at the origin of a very rapid docking-site population in a single conformation. Our observations likely explain the unusually low affinity of FixL for CO that is at the origin of the weak ligand discrimination between CO and O(2). Moreover, we observe orders of magnitude faster vibrational relaxation of dissociated CO in FixL than in globins, implying strong interactions of the ligand with the distal heme pocket environment. Finally, in the R220H FixLH mutant protein, where CO is H-bonded to a distal histidine, we demonstrate that the H-bond is maintained during photolysis. Comparison with extensively studied globin proteins unveils a surprisingly rich variety in both structural and dynamic properties of the interaction of a diatomic ligand with the ubiquitous b-type heme-proximal histidine system in different distal pockets.  相似文献   

5.
The incorporation of an artificially created metal complex into an apomyoglobin is one of the attractive methods in a series of hemoprotein modifications. Single crystals of sperm whale myoglobin reconstituted with 13,16-dicarboxyethyl-2,7-diethyl-3,6,12,17-tetramethylporphycenatoiron(III) were obtained in the imidazole buffer, and the 3D structure with a 2.25-A resolution indicates that the iron porphycene, a structural isomer of hemin, is located in the normal position of the heme pocket. Furthermore, it was found that the reconstituted myoglobin catalyzed the H2O2-dependent oxidations of substrates such as guaiacol, thioanisole, and styrene. At pH 7.0 and 20 degrees C, the initial rate of the guaiacol oxidation is 11-fold faster than that observed for the native myoglobin. Moreover, the stopped-flow analysis of the reaction of the reconstituted protein with H2O2 suggested the formation of two reaction intermediates, compounds II- and III-like species, in the absence of a substrate. It is a rare example that compound III is formed via compound II in myoglobin chemistry. The enhancement of the peroxidase activity and the formation of the stable compound III in myoglobin with iron porphycene mainly arise from the strong coordination of the Fe-His93 bond.  相似文献   

6.
H64D myoglobin mutant was reconstituted with two different types of synthetic hemes that have aromatic rings and a carboxylate‐based cluster attached to the terminus of one or both of the heme‐propionate moieties, thereby forming a “single‐winged cofactor” and “double‐winged cofactor,” respectively. The reconstituted mutant myoglobins have smaller Km values with respect to 2‐methoxyphenol oxidation activity relative to the parent mutant with native heme. This suggests that the attached moiety functions as a substrate‐binding domain. However, the kcat value of the mutant myoglobin with the double‐winged cofactor is much lower than that of the mutant with the native heme. In contrast, the mutant reconstituted with the single‐winged cofactor has a larger kcat value, thereby resulting in overall catalytic activity that is essentially equivalent to that of the native horseradish peroxidase. Enhanced peroxygenase activity was also observed for the mutant myoglobin with the single‐winged cofactor, thus indicating that introduction of an artificial substrate‐binding domain at only one of the heme propionates in the H64D mutant is the optimal engineering strategy for improving the peroxidase activity of myoglobin.  相似文献   

7.
Monoazahemin reconstituted myoglobin was prepared and its electrochemical behavior was studied in comparison with native myoglobin. For both myoglobins well-defined voltammograms were clearly obtained at highly hydrophilic surfaces of indium oxide electrodes. Although monoazahemin showed a more positive redox potential than hemin (measured in methanol), monoazahemin reconstituted myoglobin showed a more negative redox potential than native myoglobin in a 50 mM bis-Tris buffer solution (pH 6.5), suggesting that for both native and reconstituted myoglobins the heme environment including proximal histidine as an axial ligand of the redox center plays an important role in determining the redox potential. Also, a unique electrochemical response of cyano-monoazahemin reconstituted myoglobin was demonstrated.  相似文献   

8.
The iron complex of oxypyriporphyrin, a porphyrinoid containing a keto-substituted pyridine, was coupled with apomyoglobin. The reconstituted ferric myoglobin was found to be five-coordinate without iron-bound water molecules. The anionic ligands such as CN (-) and N 3 (-) bound the myoglobin with high affinities, while neutral imidazole did not. The IR observation indicated that the azide complex was pure high-spin, although the corresponding native protein was in the spin-state equilibrium. The reduced myoglobin was five-coordinate but exhibited no measurable affinity for O 2. The affinity for CO was lowered down to 1/2400 as compared with native myoglobin. These anomalies were ascribed to the deformation in the iron coordination core after the replacement of one of the four pyrroles with a larger pyridine ring. The ligand binding analyses for the ferric and ferrous myoglobin suggest that the proximal histidine pulls the iron atom from the deformed core to reduce the interaction between the iron and exogenous ligands. Similarity of the reconstituted myoglobin with guanylate cyclase, a NO-responsive signaling hemoprotein, was pointed out.  相似文献   

9.
A supramolecular conjugate of myoglobin (Mb) and water‐soluble poly(acrylate), (PA5k and PA25k, where 5k and 25k represent the molecular weight of the polymers, respectively), is constructed on the basis of a noncovalent heme‐heme pocket interaction. The modified heme with an amino group linked to the terminus of one of the heme‐propionates is coupled to the side‐chain carboxyl groups of poly(acrylate) activated by N‐hydroxysuccinimide. The ratios of the heme‐modified monomer unit and the unmodified monomer unit (m:n) in the polymer chains of Heme‐PA5k and Heme‐PA25k were determined to be 4.5:95.5 and 3.1:96.9, respectively. Subsequent addition of apoMb to the conjugated polymers provides Mb‐connected fibrous nanostructures confirmed by atomic force microscopy. A mixture of the heme‐modified polymer and dimeric apomyoglobin as a cross‐linker forms a microgel in which the reconstituted myoglobin retains its native exogenous ligand binding activity.  相似文献   

10.
Inspired by the observation of polar interactions between CO and O(2) ligands and the peptide residues at the active site of hemoglobin and myoglobin, we synthesized two kinds of superstructured porphyrins: TCP-IM, which contains a linked imidazole ligand, and TCP-PY, which contains a linked pyridine ligand, and examined the thermodynamic, kinetic, and spectroscopic (UV/Vis, IR, NMR, and resonance Raman) properties of their CO and O(2) complexes. On both sides of each porphyrin plane, bulky binaphthyl bridges form hydrophobic cavities that are suitable for the binding of small molecules. In the proximal site, an imidazole or pyridine residue is covalently fixed and coordinates axially to the central iron atom. In the distal site, two naphtholic hydroxyl groups overhang toward the center above the heme. The CO affinities of TCPs are significantly lower than those of other heme models. In contrast, TCPs have moderate O(2) binding ability. Compared with reported model hemes, the binding selectivity of O(2) over CO in TCP-IM and TCP-PY complexes is greatly improved. The high O(2) selectivity of the TCPs is mainly attributable to a low CO affinity. The comparison of k(on)(CO) values of TCPs with those of unhindered hemes indicates the absence of steric hindrance to the intrinsically linear CO coordination to Fe(II) in TCP-IM and TCP-PY. The abnormally large k(off)(CO) values are responsible for the low CO affinities. In contrast, k(off)(O(2)) of TCP-PY is smaller than those of other pyridine-coordinated model hemes. For the CO adducts of TCPs, unusually low nu(Fe-CO) and unusually high nu(C-O) frequencies are observed. These results can be ascribed to decreased back-bonding from the iron atom to the bound CO. The lone pairs of the oxygen atoms of the hydroxyl groups prevent back-bonding by exertion of a strong negative electrostatic interaction. On the other hand, high nu(Fe-O(2)) frequencies are observed for the O(2) adducts of TCPs. In the resonance Raman (RR) spectrum of oxy-TCP-IM, we observed simultaneous enhancement of the Fe-O(2) and O-O stretching modes. Furthermore, direct evidence for hydrogen bonding between the hydroxyl groups and bound dioxygen was obtained by RR and IR spectroscopy. These spectroscopic data strongly suggest that O(2) and CO binding to TCPs is controlled mainly by the two different electrostatic effects exerted by the overhanging OH groups: destabilization of CO binding by decreasing back-bonding and stabilization of O(2) binding by hydrogen bonding.  相似文献   

11.
To modulate the physiological function of a hemoprotein, most approaches have been demonstrated by site-directed mutagenesis. Replacement of the native heme with an artificial prosthetic group is another way to modify a hemoprotein. However, an alternate method, mutation or heme reconstitution, does not always demonstrate sufficient improvement compared with the native heme enzyme. In the present study, to convert a simple oxygen storage hemoprotein, myoglobin, into an active peroxidase, we applied both methods at the same time. The native heme of myoglobin was replaced with a chemically modified heme 2 having two aromatic rings at the heme-propionate termini. The constructed myoglobins were examined for 2-methoxyphenol (guaiacol) oxidation in the presence of H2O2. Compared with native myoglobin, rMb(H64D.2) showed a 430-fold higher kcat/Km value, which is significantly higher than that of cytochrome c peroxidase and only 3-fold less than that of horseradish peroxidase. In addition, myoglobin-catalyzed degradation of bisphenol A was examined by HPLC analysis. The rMb(H64D.2) showed drastic acceleration (>35-fold) of bisphenol A degradation compared with the native myoglobin. In this system, a highly oxidized heme reactive species is smoothly generated and a substrate is effectively bound in the heme pocket, while native myoglobin only reversibly binds dioxygen. The present results indicate that the combination of a modified-heme reconstitution and an amino acid mutation should offer interesting perspectives toward developing a useful biomolecule catalyst from a hemoprotein.  相似文献   

12.
Human serum albumin (HSA) is the most abundant plasma protein in our bloodstream and serves as a transporter for small hydrophobic molecules such as fatty acids, bilirubin, and steroids. Hemin dissociated from methemoglobin is also bound within a narrow D-shaped cavity in subdomain IB of HSA. In terms of the general hydrophobicity of the alpha-helical pocket, HSA potentially has features similar to the heme-binding site of myoglobin (Mb) or hemoglobin (Hb). However, the reduced ferrous HSA-heme complex is immediately oxidized by O2, because HSA lacks the proximal histidine that enables the heme group to bind O2. In this paper, we report the introduction of a proximal histidine into the subdomain IB of HSA by site-directed mutagenesis to construct a tailor-made heme pocket (I142H/Y161L), which allows a reversible O2 binding to the prosthetic heme group. Laser flash photolysis experiments revealed that this artificial hemoprotein appears to have two different geometries of the axial-imidazole coordination, and these two species (I and II) showed rather low O2 binding affinities (P1/2O2 = 18 and 134 Torr) relative to those of Mb and Hb.  相似文献   

13.
The highly stereoselective cleavage of hemin in myoglobin by coupled oxidation has been attributed to steric barriers that leave more space near the alpha- than the other meso-positions. The steric barriers near meso positions in myoglobin have been investigated by establishing the thermodynamics and dynamics of possible seatings in the pocket of horse myoglobin of a four-fold symmetric etioheme I modified with a bulky nitro group at a single meso position. The cyanomet complex of this reconstituted myoglobin exhibits three sets of (1)H NMR resonances that are linked dynamically and occur in approximate populations ratios of 0.82:0.10:0.08. Two dimensional (1)H NMR has been used to assign the hemin and heme pocket resonances in the major isomer in solution and to determine that the hemin is oriented with the nitro group at the canonical gamma-meso position of native hemin. The dominance of this isomer is attributed to the solvent exposure of this portion of the hemin which stabilizes the highly polar nitro group. Using a combination of magnetization transfer among methyl groups of the three isomers due to "hopping" of the hemin about its normal, the assigned resonances of an isoelectronic, bis-cyano complex of meso-nitro-etioheme I, and the known essentially constant rhombic perturbation of heme pocket sites on the hyperfine shifts of heme methyl (Kolczak, U.; Hauksson, J. B.; Davis, N. L.; Pande, U.; de Ropp, J. S.; Langry, K. C.; Smith, K. M.; LaMar, G. N. J. Am. Chem. Soc. 1999, 121, 835-843); the two minor isomers are shown to place their bulky nitro group at the canonical delta-meso (8%) and alpha-meso positions (10%). The comparable population of the isomers with nitro groups at the hydrophobic alpha- and delta-meso positions dictates that, while the static crystal structure finds more room near the alpha-meso position, the deformation at minimal energetic expense near the alpha- and delta-meso positions is comparable. These results argue that factors other than simple steric influences control the selectivity of the ring cleavage in myoglobin.  相似文献   

14.
Electrospray ionization mass spectrometry (ESI‐MS) was employed to monitor the heme release and the conformational changes of myoglobin (Mb) under different solvent conditions, and to observe ligand bindings of Mb. ESI‐MS, complemented by circular dichroism and fluorescence spectroscopy, was used to study the mechanism of acid‐ and organic solvent‐induced denaturation by probing the changes in the secondary and the tertiary structure of Mb. The results obtained show that complete disruption of the heme–protein interactions occurs when Mb is subjected to one of the following solution conditions: pH 3.2–3.6, or solution containing 20–30% acetonitrile or 40–50% methanol. Outside these ranges, Mb is present entirely in its native state (binding with a heme group) or as apomyoglobin (i.e. without the heme). Spectroscopic data demonstrate that the denaturation mechanism of Mb induced by acid may be significantly different from that by the organic solvent. Low pH reduces helices in Mb, whereas certain organic content level in solution results in the loss of the tertiary structure. ESI‐MS conditions were established to observe the H2O‐ and CO‐bound Mb complexes, respectively. H2O binding to metmyoglobin (17 585 Da), where the heme iron is in the ferric oxidation state, is observed in ESI‐MS. CO binding to Mb (17 595 Da), on the other hand, can be only observed after the heme iron is reduced to the ferrous form. Therefore, ESI‐MS combined with spectroscopic techniques provides a useful means for probing the formation of ligand‐binding complexes and characterizing protein conformational changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The myoglobin (Mb) heme Fe‐O‐N=O and heme Fe‐O‐N=O/2‐nitrovinyl species have been characterized by resonance Raman spectroscopy. In the heme Fe‐O‐N=O species, the bound nitrite ligand is removed by solvent exchange, thus reforming metmyoglobin (metMb). The high‐spin heme Fe‐O‐N=O unit is converted into a low‐spin heme Fe‐O‐N=O/2‐nitrovinyl species that can be reversibly switched between a low‐ and a high‐spin state without removing the bound nitrite ligand, as observed in the case of the heme Fe‐O‐N=O species. This spin‐state change is likely to be accompanied by a general structural rearrangement in the protein‐binding pocket. This example is the first of a globin protein that can reversibly change its metal spin state through an internal perturbation. These findings provide a basis for understanding the structure–function relationship of the spin cross found in other metalloenzymes and FeIII–porphyrin complexes.  相似文献   

16.
Interconversion dynamics of the ligand in the primary docking site of myoglobin (Mb) and hemoglobin (Hb) in trehalose and glycerol/D2O mixtures at 283 K was investigated by probing time-resolved vibrational spectra of CO photolyzed from these proteins. The interconversion dynamics in viscous media are similar to those in aqueous solution, indicating that it is minimally coupled to the solvent-coupled large-scale protein motion. Interconversion rates in the heme pocket of Hb in water solution are slower than those of Mb in trehalose glass, suggesting that the interconversion barrier in Hb is intrinsically higher than that in Mb and is not modified by the solvent viscosity.  相似文献   

17.
Structural dynamics within the distal cavity of myoglobin protein is investigated using 2D‐IR and IR pump–probe spectroscopy of the N≡C stretch modes of heme‐bound thiocyanate and selenocyanate ions. Although myoglobin‐bound thiocyanate group shows a doublet in its IR absorption spectrum, no cross peaks originating from chemical exchange between the two components are observed in the time‐resolved 2D IR spectra within the experimental time window. Frequency–frequency correlation functions of the two studied anionic ligands are obtained by means of a few different analysis approaches; these functions were then used to elucidate the differences in structural fluctuation around ligand, ligand–protein interactions, and the degree of structural heterogeneity within the hydrophobic pocket of these myoglobin complexes.  相似文献   

18.
Complexing an iron protoporphyrin IX into a genetically engineered heme pocket of recombinant human serum albumin (rHSA) generates an artificial hemoprotein, which can bind O2 in much the same way as hemoglobin (Hb). We previously demonstrated a pair of mutations that are required to enable the prosthetic heme group to bind O2 reversibly: (i) Ile-142-->His, which is axially coordinated to the central Fe2+ ion of the heme, and (ii) Tyr-161-->Phe or Leu, which makes the sixth coordinate position available for ligand interactions [I142H/Y161F (HF) or I142H/Y161L (HL)]. Here we describe additional new mutations designed to manipulate the architecture of the heme pocket in rHSA-heme complexes by specifically altering distal amino acids. We show that introduction of a third mutation on the distal side of the heme (at position Leu-185, Leu-182, or Arg-186) can modulate the O2 binding equilibrium. The coordination structures and ligand (O2 and CO) binding properties of nine rHSA(triple mutant)-heme complexes have been physicochemically and kinetically characterized. Several substitutions were severely detrimental to O2 binding: for example, Gln-185, His-185, and His-182 all generated a weak six-coordinate heme, while the rHSA(HF/R186H)-heme complex possessed a typical bis-histidyl hemochrome that was immediately autoxidized by O2. In marked contrast, HSA(HL/L185N)-heme showed very high O2 binding affinity (P1/2O2 1 Torr, 22 degrees C), which is 18-fold greater than that of the original double mutant rHSA(HL)-heme and very close to the affinities exhibited by myoglobin and the high-affinity form of Hb. Introduction of Asn at position 185 enhances O2 binding primarily by reducing the O2 dissociation rate constant. Replacement of polar Arg-186 with Leu or Phe increased the hydrophobicity of the distal environment, yielded a complex with reduced O2 binding affinity (P1/2O2 9-10 Torr, 22 degrees C), which nevertheless is almost the same as that of human red blood cells and therefore better tuned to a role in O2 transport.  相似文献   

19.
Molecular dynamics simulations were performed to investigate the gate effect of protein motion on the escape of O(2) from the heme pocket. The existing geometric entropy in a spherical cavity pushes the ligand toward the cavity surface, and then the ligand escape along the cavity surface is controlled by the gate size and gate modulation, i.e., protein dynamics regulate the gating behavior, which is an inherent feature of proteins such as myoglobin. Our simulation results confirm that the ligand escape process is basically entropy driven.  相似文献   

20.
The time scale and mechanism of vibrational energy relaxation of the heme moiety in myoglobin was studied using molecular dynamics simulation. Five different solvent models, including normal water, heavy water, normal glycerol, deuterated glycerol and a nonpolar solvent, and two forms of the heme, one native and one lacking acidic side chains, were studied. Structural alteration of the protein was observed in native myoglobin glycerol solution and native myoglobin water solution. The single-exponential decay of the excess kinetic energy of the heme following ligand photolysis was observed in all systems studied. The relaxation rate depends on the solvent used. However, this dependence cannot be explained using bulk transport properties of the solvent including macroscopic thermal diffusion. The rate and mechanism of heme cooling depends upon the detailed microscopic interaction between the heme and solvent. Three intermolecular energy transfer mechanisms were considered: (i) energy transfer mediated by hydrogen bonds, (ii) direct vibration-vibration energy transfer via resonant interaction, and (iii) energy transfer via vibration-translation or vibration-rotation interaction, or in other words, thermal collision. The hydrogen bond interaction and vibration-vibration interaction between the heme and solvent molecules dominates the energy transfer in native myoglobin aqueous solution and native myoglobin glycerol solutions. For modified myoglobin, the vibration-vibration interaction is also effective in glycerol solution, different from aqueous solution. Thermal collisions form the dominant energy transfer pathway for modified myoglobin in water solution, and for both native myoglobin and modified myoglobin in a nonpolar environment. For native myoglobin in a nonpolar solvent solution, hydrogen bonds between heme isopropionate side chains and nearby protein residues, absent in the modified myoglobin nonpolar solvent solution, are key interactions influencing the relaxation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号