首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using aqueous extraction of red sanders powder as a reducing agent, silver and copper bimetallic nanoparticles were in situ generated in cotton fabrics. Silver and copper nanoparticles were also generated separately for comparison. The resulted nanocomposite cotton fabrics (NCFs) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and antibacterial tests. SEM analysis indicated the generation of more number of nanoparticles when bimetallic source solutions were used. Further, the size range of the generated bimetallic nanoparticles was found to be lower than when individual metal nanoparticles were generated in NCFs. XRD analysis confirmed the in situ generation of silver and copper nanoparticles when equimolar bimetallic salt source solutions were utilized. The NCFs with bimetallic nanoparticles exhibited higher antibacterial activity against both Gram-negative and Gram-positive bacteria and hence can be considered for applications as antibacterial bed and dressing materials.  相似文献   

2.
利用金属蒸气法制备了不同组成的Nj-CujSiO2双金属催化剂,XRD、TEM和磁性测定表明有Ni-Cu合金形成,合金颗粒的组成不均匀,而且有部分自由的Ni和Cu存在;Ni/Cu摩尔比为1:1催化剂的催化活性大于2:1和3:1的双金属催化剂以及Ni和Cu的单金属催化剂。  相似文献   

3.
以壳聚糖(CS)为稳定剂, 采用化学还原法制备了非负载型NiB非晶态合金催化剂(NiB-CS); 并用 X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP)、X射线光电子能谱(XPS)、透射电镜(TEM)、选区电子衍射(SAED)等表征方法研究了催化剂的非晶性质、原子组成及粒径大小等. 考察了催化剂对糠醇加氢制四氢糠醇反应的催化性能, 并与没有壳聚糖保护的NiB催化剂进行了对比. 结果表明, 加入壳聚糖制得的NiB-CS催化剂的活性组分NiB粒径更小, 表面活性组分浓度更高, 催化活性更高.  相似文献   

4.
Superlattices of monolayer protected metallic and semiconducting nanoclusters have attracted significant attention due to their promising applications in nanotechnology. In this paper, we investigate the effect of temperature on the ordered superlattice structure of relatively larger sized Au nanoclusters passivated with dodecanethiol [ca. Au1415(RS)328] with the help of in situ temperature controlled X-ray diffraction (XRD) and infrared spectroscopy (IR) in conjunction with thermogravimetric (TG) and differential scanning calorimetric (DSC) analysis. In brief, monolayer protected Au nanoclusters (AuMPC) were prepared by a modified Brust synthesis technique, where dodecanethiol itself acts as both phase transfer and simultaneous capping agent during the reduction process, generating an average particle size of 3.72 +/- 0.4 nm after repeated solvent extraction and careful fractionation experiments. These particles are characterized with the help of UV-vis, transmission electron microscopic (TEM), IR, and NMR techniques, where effective capping as well as the superlattice formation on the TEM grid is evident from the combined analysis of these results. In situ low-angle XRD analysis shows that the particles undergo an irreversible phase transition in the temperature range of 100-115 degrees C, which is also reflected in the data from in situ IR analysis. However, the DSC analysis does not account for this phase transition, although the reversible phase transition due to the alkyl chain dynamics is in good agreement with the previously reported results. These results indicate the formation of temperature-induced, diffusion-limited phase transition involving nonequilibrium fractal structures, which is in good agreement with the previous available theoretical studies. The determination of the temperature window for the stability of these ordered assemblies would be used to understand the effect of thermal stress for device applications.  相似文献   

5.
PtSn bimetallic nanoparticles with different particle sizes (1-9 nm), metal compositions (Sn content of 10-80 mol %), and organic capping agents (e.g., amine, thiol, carboxylic acid and polymer) were synthesized by colloidal chemistry methods. Transmission electron microscopy (TEM) measurements show that, depending on the particle size, the as-prepared bimetallic nanocrystals have quasi-spherical or faceted shapes. Energy-dispersive X-ray (EDX) analyses indicate that for all samples the signals of both Pt and Sn can be detected from single nanoparticles, confirming that the products are actually bimetallic but not only a physical mixture of pure Pt and Sn metal nanoparticles. X-ray diffraction (XRD) measurements were also conducted on the bimetallic particle systems. When compared with the diffraction patterns of monometallic Pt nanoparticles, the bimetallic samples show distinct shifts of the Bragg reflections to lower degrees, which gives clear proof of the alloying of Pt with Sn. However, a quantitative analysis of the lattice parameter shifts indicates that only part of the Sn atoms are incorporated into the alloy nanocrystals. This is consistent with X-ray photoelectron spectroscopy (XPS) measurements that reveal the segregation of Sn at the surfaces of the nanocrystals. Moreover, short PtSn bimetallic nanowires were synthesized by a seed-mediated growth method with amine-capped bimetallic particles as precursors. The resulting nanowires have an average width of 2.3 nm and lengths ranging from 5 to 20 nm.  相似文献   

6.
A composite hydrogel consisting of well-dispersed Pt-Cu nanoparticles (NPs) supported on three-dimensional (3D) graphene (Pt-Cu@3DG) was successfully prepared by mild chemical reduction. The 3D interconnected macroporous structure of the graphene framework not only possesses large specific surface area that allows high metal loadings, but also facilitates mass transfer during the catalytic reaction. The Pt-Cu bimetallic alloy NPs show good catalytic activity compared with Pt NPs and reduce the content of Pt NPs used, thereby lowering costs. The morphology and composition of the Pt-Cu@3DG composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The catalysis studies indicate that the resulting composites can be used as an efficient, inexpensive, recyclable, and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol under mild conditions.  相似文献   

7.
利用液-液界面反应体系,使分别溶解在油相中的银前体和水相中的硫前体在液滴界面发生反应,在室温条件下成功制备出近红外荧光Ag_2S量子点。采用透射电子显微镜(TEM)、X-射线衍射光谱(XRD)、傅立叶变换红外(FT-IR)光谱和荧光光谱等对产物进行了表征。结果表明,此方法成功制得了粒径较均一的Ag_2S量子点,纯化后经加热熟化处理其量子产率可达2.68%。另外实验发现,通过改变投料比即可实现Ag_2S量子点的粒径控制及荧光发射峰波长调控(1 170nm至1 279nm)。  相似文献   

8.
A new copper modified amine functionalized zirconia has been synthesized by a co-condensation method using zirconium butoxide and aminopropyltriethoxy-silane (APTES) in the presence of a cationic surfactant CTAB followed by impregnation of copper. Nitrogen adsorption-desorption, X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), (13)C nuclear magnetic resonance (NMR), scanning electron micrography (SEM), transmittance electron micrography (TEM), thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray photoelectron spectroscopy (XPS) and UV-vis DRS spectroscopic tools are used to characterize the materials. FT-IR and DRS results indicated the incorporation of Cu and amino groups on the surface of zirconia. This Cu-anchored mesoporous material acts as an efficient, reusable catalyst in the aryl-sulfur coupling reaction between aryl iodide and thiophenol for the synthesis of value added diarylsulfides.  相似文献   

9.
With the control of G1 poly(amidoamine) (PAMAM), an evolutionary course of stable colloidal silver from discrete nanoparticles to solid spheres through ultraviolet irradiation reduction of silver nitrate solutions was observed by transmission electron microscopy (TEM). The morphologies of the products depend on the Ag+ concentration. A mechanism of globular assembly was put forward to interpret the evolution of the nanostructures. Powder X-ray diffraction (XRD), electron diffraction (ED) patterns, and X-ray photoelectron spectroscopy (XPS) indicate the presence of cubic symmetry silver. XPS and Fourier transform infrared (FT-IR) spectroscopy confirm that dendrimers have participated in the stabilization and control of Ag nanostructures. In the UV-vis spectra, the intense surface plasmons are centered at 425 and 430 nm corresponding to the shapes of dots and solid spheres, respectively. The solid spheres exhibit excellent catalytic efficiency on the reduction of 2,7-dicholoroflurescein (DCF).  相似文献   

10.
以氧化石墨烯和CdS为原料, 在乙醇水溶液中采用CdS光催化还原法制备了CdS/石墨烯复合光催化材料, 并用透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和瞬态光电流等技术对复合材料的结构和光电性能进行了表征. 可见光照射下(λ≥420 nm), 研究了该复合材料光催化分解水产氢的性能. 结果表明, 可见光照射下CdS的光生电子可有效地还原氧化石墨烯, 得到CdS与石墨烯之间具有强相互作用力的CdS/石墨烯复合材料. 与CdS相比, 复合材料中石墨烯作为良好的电子受体和传递介质, 可明显加快CdS光生电子的迁移速率, 提高光生载流子的分离效率, 从而增强复合材料的光电性能和光催化分解水产氢的活性.  相似文献   

11.
SBR/unmodified HNT composites were prepared by open-mill mixing and vulcanization. The results showed that HNT could decrease the scorch and optimum cure time, and play a significant role in reinforcing SBR vulcanizates. Mechano-chemical grafting at the interface between HNT and SBR was investigated by using infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), solid-state 13C NMR spectra and bonded rubber content, etc. The results showed the shearing force during the mixing process can impel the grafting reaction of SBR onto the surfaces of HNT, which leads to interfacial chemical bonding between phenyl’s α-H of SBR and the surface groups of HNT with Si-OH or Al-OH. Thus, the mechanical properties of the composites were significantly enhanced.  相似文献   

12.
IntroductionAsoneofthemethodsofpreparationofsupportedmetalcatalysts,solvatedmatalatomdispersion(SMAD)onoxidesupportsattractsmuchattentionnowadays.TIstechniquehasbeendevelopedbyKlabunde'SandOzin'sresearchgroups.Itprovidesanumberofadvantages,ascomparedwitht…  相似文献   

13.
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl)phosphonium acetate, [P(8 8 8 12)][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using (13)C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)(2) in 1-ethyl-3-methylimidazolium acetate, [C(2)mim][OAc], crystals were obtained that revealed the structure of [C(2)mim][Cu(3)(OAc)(5)(OH)(2)(H(2)O)]·H(2)O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.  相似文献   

14.
采用简易的沉淀-氟化-回流晶化法在低温下制备了氟改性纳米TiO2 (F-TiO2), 并通过透射电镜(TEM), X射线衍射(XRD), 傅里叶变换红外(FTIR)光谱, X射线光电子能谱(XPS)和漫反射光谱(DRS)等表征手段研究了粉末的形貌、晶型、元素形态和光吸收性质. 结果表明: 实验制得的F-TiO2为椭圆形纳米颗粒, 粒径为5-8 nm; 氟离子能够有效抑制板钛矿相TiO2的生成, 并同时提高锐钛矿相TiO2的晶化度; 修饰的氟主要分布在TiO2表面, 以化学吸附态为主, 并伴有少量的间隙氟. 光催化降解甲基橙的实验表明, 氟离子改性的TiO2同时具有较高的全谱和可见光催化活性. 通过碱洗和焙烧的对照实验分析可知, F-TiO2在可见光下降解甲基橙的机理是源于一种由TiO2表面吸附氟和间隙氟共同增强的染料敏化降解作用.  相似文献   

15.
超声引发无皂乳液聚合制备纳米银/PAAEM复合材料及其表征   总被引:1,自引:0,他引:1  
在不使用气体保护及乳化剂的条件下,超声辐射引发无皂乳液聚合双原位合成纳米银/聚乙酰乙酸基甲基丙烯酸乙酯(PAAEM)复合材料。并通过XRD、FTIR、TEM、HRTEM、XPS和TG等分析方法对其进行表征。结果表明:纳米银粒子具有面心立方结构和球形或近球形形貌,且较均匀地分散在聚合物基体中;纳米银粒子与基体之间的相互作用是纳米银与基体中乙酰乙酸基的羰基氧原子配位所产生的;而且纳米银粒子对基体PAAEM的热学性能有很大影响。  相似文献   

16.
采用简单的水热法制备了多面体钒酸铋(BVO)材料,又通过化学还原法首次在BVO上原位合成了一种小尺寸的AgNi双金属助催化剂并研究了其光催化性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)光谱、N2吸附-脱附等手段对制备的AgNi/BVO材料的理化性能进行了表征。结果表明,AgNi双金属广泛负载在这种特殊形貌的BVO多面体表面,大大增加了金属的附着位点,同时AgNi负载也提高了BVO的结晶性。银表面等离子体谐振效应与镍的共格界面效应增强了BVO催化剂对可见光的吸收,增强了光生电子的分离,提高了光催化活性。光催化降解MB (亚甲基蓝)实验表明,当Ag、Ni的质量比为3∶1时,AgNi/BVO的催化活性最高,在可见光照射下其反应速率常数是BVO的5.4倍,该光催化剂在4次循环后仍能保持良好的光催化活性。  相似文献   

17.
A novel laser–solid–liquid ablation technique has been developed to synthesize Ag2Se nanoparticles from silver nitrate and selenium powder in a mixed solvent of 2-propanol and ethylenediamine. The products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The XRD indicated that the products were the single phase of silver selenide. The TEM images revealed that the as-prepared Ag2Se grains were homogeneous and spherical, and their average size was about 30 nm. This novel technique can be extended to prepare other nanoparticles of various compositions.  相似文献   

18.
This work concerns the study of Al–Ni bimetallic nanoparticles synthesized by gamma-radiolysis of aqueous solution containing aluminium chloride hexahydrate, nickel chloride hexahydrate, polyvinyl alcohol for capping colloidal nanoparticles, and isopropanol as radical scavenger. While the Al/Ni molar ratio is kept constant, size of the nanoparticles can be well controlled by varying the radiation dose. The products were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). Observations of UV–vis absorption spectra and TEM images showed that as the radiation dose increases from 50 to 100 kGy the particle size decreases and the number particles distribution increases. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. The EDX and XRD analysis confirmed directly the formation of Al–Ni bimetallic nanoparticles in form of alloy nanoparticles.  相似文献   

19.
A series of copper-containing SBA-15 samples were successfully synthesized via evaporation-induced self-assembly route. The resulting materials were characterized by X-ray diffraction (XRD), (29)Si MAS NMR spectroscopy, transmission electron microscopy (TEM), N(2) sorption, inductively coupling plasma-atomic emission spectrometer (ICP-AES), thermogravimetry, and differential thermal analysis (TG-DTA), Fourier-transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The results indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) copper ions could be incorporated into the framework of SBA-15; (3) the addition of urea in the hydrothermal stage efficiently reduced the leaching of copper and improved the thermal stability of the mesoporous materials. Catalytic performances of the obtained materials were evaluated in the hydroxylation of phenol with H(2)O(2). The catalytic tests showed that the synthesized materials exhibited high activity for this reaction and copper ions in the framework were more active than copper species in the extra-framework position. The nitric acid treatment on the samples removed the bulk CuO species, which resulted in a dramatic increase in the catalytic activity.  相似文献   

20.
Polyethylene glycol (PEG) as a phase change material possesses three obstacles, such as leakage, low thermal conductivity and low thermal stability. A novel solid-solid phase change material (PCM) based on functionalized graphene oxide (GO), Polyethylene glycol (PEG) was prepared, and the three obstacles of PEG as a PCM was solved in one and the same material. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman and Transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and thermogravimetric analysis/infrared spectrometry (TG-IR) were used to study the properties of supporting material and composite PCM (CPCM). The results indicated that the PEG was grafted on the surface of the supporting material; Compared with pure PEG, the latent heat of CPCM with 9.6 wt% supporting material decreased only 5.3%, however, the thermal conductivity of CPCM increased 111% and the heat peak release rate of CPCM decreased 33.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号