首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local structure of Mn atoms in Ga1−xMnxAs epilayers was studied using the X-ray absorption fine structure (XAFS) at Mn K-edge. X-ray near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques were used. XAFS spectra for different Mn sites has been calculated and compared with the experimental data. Multi-parameter fitting of the EXAFS data indicates that 15-25% of Mn atoms are in interstitial sites in the as grown films. The Mn-As bond length has been found longer than Ga-As bond length in GaAs for both substitutional (MnGa) and interstitial (MnI) sites.  相似文献   

2.
X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 Gpa) were obtained by this cell.  相似文献   

3.
In combination with a single‐crystal diamond anvil cell (DAC), a polycapillary half‐lens (PHL) re‐focusing optics has been used to perform high‐pressure extended X‐ray absorption fine‐structure measurements. It is found that a large divergent X‐ray beam induced by the PHL leads the Bragg glitches from single‐crystal diamond to be broadened significantly and the intensity of the glitches to be reduced strongly so that most of the DAC glitches are efficiently suppressed. The remaining glitches can be easily removed by rotating the DAC by a few degrees with respect to the X‐ray beam. Accurate X‐ray absorption fine‐structure (XAFS) spectra of polycrystalline Ge powder with a glitch‐free energy range from ?200 to 800 eV relative to the Ge absorption edge are obtained using this method at high pressures up to 23.7 GPa, demonstrating the capability of PHL optics in eliminating the DAC glitches for high‐pressure XAFS experiments. This approach brings new possibilities to perform XAFS measurements using a DAC up to ultrahigh pressures.  相似文献   

4.
X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.  相似文献   

5.
X-ray fluorescence spectra of copper (Cu) metal, copper monoxide (CuO), and potassium chromate (K2CrO4) were recorded as a function of incident X-ray energy near the Cu K-edge and chromium (Cr) K-edge, respectively, using a conventional silicon drift detector. The spectra contained components due to elastic, inelastic, and multiple scattering, in addition to the Kα and Kβ lines. Cu and Cr K-edge X-ray absorption fine structure (XAFS) spectra of Cu, CuO, and K2CrO4 were obtained by an intensity analysis of the Kα and Kβ lines. The intensity of the Kβ line for the different incident photon energies was obtained by numerically removing the additional scattering components using the MUSCAT program. These spectra exhibited a jump near the K absorption edges, which reproduced the spectral features obtained in transmission mode for both Cu, CuO, and K2CrO4. A chemical shift was also clearly identified in the X-ray absorption near edges structure using the X-ray fluorescence Kβ line. In addition, the Cr K-edge extended XAFS spectrum of K2CrO4 was clearly observed using the Cr Kβ fluorescent line. The XAFS measurements on the Kα and Kβ lines are possible, and they carry equally valuable information.  相似文献   

6.
A new approach is introduced for determining X‐ray absorption spectroscopy (XAS) spectra on absolute and relative scales using multiple solutions with different concentrations by the characterization and correction of experimental systematics. This hybrid technique is a development of standard X‐ray absorption fine structure (XAFS) along the lines of the high‐accuracy X‐ray extended range technique (XERT) but with applicability to solutions, dilute systems and cold cell environments. This methodology has been applied to determining absolute XAS of bis(N‐n‐propyl‐salicylaldiminato) nickel(II) and bis(N‐i‐propyl‐salicylaldiminato) nickel(II) complexes with square planar and tetrahedral structures in 15 mM and 1.5 mM dilute solutions. It is demonstrated that transmission XAS from dilute systems can provide excellent X‐ray absorption near‐edge structure (XANES) and XAFS spectra, and that transmission measurements can provide accurate measurement of subtle differences including coordination geometries. For the first time, (transmission) XAS of the isomers have been determined from low‐concentration solutions on an absolute scale with a 1–5% accuracy, and with relative precision of 0.1% to 0.2% in the active XANES and XAFS regions after inclusion of systematic corrections.  相似文献   

7.
Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye–Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.  相似文献   

8.
利用X 射线衍射(XRD)和X射线吸收精细结构(XAFS)方法研究了磁控共溅射方法制备的MnxGe1-x薄膜样品的结构随掺杂磁性原子Mn含量的变化规律.XRD结果表明,在Mn的含量较低(7.0%)的Mn0.07Ge0.93样品中,只能观察到对应于多晶Ge的XRD衍射峰,而对Mn含量较高(25.0%, 36.0%)的Mn0.25Ge0.75和Mn关键词: 磁控溅射 XRD XAFS xGe1-x稀磁半导体薄膜')" href="#">MnxGe1-x稀磁半导体薄膜  相似文献   

9.
The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.  相似文献   

10.
Fe K-edge X-ray absorption fine structure (XAFS) measurements were performed in order to elucidate the formation mechanism of single-walled carbon nanotubes (SWCNTs) grown on natural magnesite by pyrolyzing methane gas. It was clearly shown by XAFS analyses that iron metal fine particles, which were reduced from iron oxides by methane gas, worked as a catalyst for SWCNT growth. Structural characteristics of the initial iron state in the natural magnesite were also discussed.  相似文献   

11.
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.  相似文献   

12.
Ceramic tiles used to manufacture artistic panels during the XVI to the XVIII centuries were decorated with high-lead soda-lime glazes, incorporating a diversity of chromophore cations, as ascertained by SRXRF (synchrotron radiation X-ray fluorescence). Previous X-ray absorption spectroscopy (XAS) studies have shown that sodium and lead are hosted by the glassy matrix in those glazes. However, the possible role of calcium as a modifier of the tetrahedral silica network is not fully clarified, despite being recognized that calcium cations alter some fundamental properties of glazes, namely transparency. An X-ray absorption fine structure (XAFS) study of glazes with varied colorings was therefore undertaken at Ca K- and L-edges. Well crystallized oxide minerals were used to model distinct coordination environments by oxygen atoms – close to octahedral geometry in calcite and dodecahedral in gypsum – while fluorite was chosen to mimic ideal cubic coordination. A first XAS approach suggested a minor variation in the energy separation between L2–L3 absorption edges when comparing blue and yellow glazes, irrespective of the period of manufacture. A further study on the X-ray absorption near-edge structure (XANES) carried out at the K-edge corroborated this difference and, along with the theoretical spectra modeling performed with the FEFF code, allowed interpreting of the Ca 1s absorption spectra of glazes as arising from a non-regular high-coordination environment within the silica matrix. PACS  61.43.Fs; 41.60.Ap; 61.10.Ht  相似文献   

13.
Single crystals of ThO2 have been synthesized using hydrothermal growth and studied using the X‐ray absorption fine structure (XAFS) technique. The extended X‐ray absorption fine structure (EXAFS) has been extracted from the XAFS and analyzed using a novel, computational Latin hypercube sampling method. The methodology not only confirms the expected space group and crystal structure, it also identifies the origin of a previously reported split O shell. Since EXAFS is a local order analysis technique, the O shell splitting is identified as an O atom occupying an interstitial site. This result is significant for examining O2– transport in a ThO2 matrix and corroborating research indicating partial Th 5f occupancy that is similar to hyper‐stoichiometric UO2+x compounds. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Physics of the Solid State - The local structure and charge state of the cobalt impurity in SrTiO3 is studied by X-ray absorption fine structure (XAFS) spectroscopy. The synthesis conditions, under...  相似文献   

15.
J.S. Tian  G.M. Han  Q. Zheng  T. Jin  X.F. Sun 《哲学杂志》2013,93(17):2161-2171
The Ni L3,2-edge spectra of the pure Ni, pure NiAl and alloying-element-doped NiAl compounds were obtained by synchrotron radiation X-ray absorption fine structure (XAFS). Due to orbital hybridization effect, directional covalent-type bonds formed and decreased the ductility during forming NiAl. Combining the XAFS spectra analysis and electronegativity comparison, the effects of alloying elements on the electronic structure and then the ductility of the NiAl compounds were obtained. The results showed that Cr, Co, Mo, Ru and W doping could be beneficial to the ductility by both weakening the directional bonds along the <111> direction and enhancing the d–d interactions of the transition metals–Ni atom pair, namely by the transition from covalent bonds to metallic bonds which was beneficial for dislocation to migrate. The results agreed well with the available experimental data and other theoretical results, proving that the model linking the electronic structure and ductility is reliable and can be used as guidance for alloy design.  相似文献   

16.
The local structures and optical absorption characteristics of Fe doped Ti O2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction(XRD), X-ray absorption fine structure spectroscopy(XAFS) and ultraviolet-visible absorption spectroscopy(UV-Vis). XRD patterns show that all Fe-doped Ti O2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region.  相似文献   

17.
A two‐dimensional imaging system of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐4 of the Synchrotron Radiation Center of Ritsumeikan University. The system mainly consists of an ionization chamber for I0 measurement, a sample stage, and a two‐dimensional complementary metal oxide semiconductor (CMOS) image sensor for measuring the transmitted X‐ray intensity. The X‐ray energy shift in the vertical direction, which originates from the vertical divergence of the X‐ray beam on the monochromator surface, is corrected by considering the geometrical configuration of the monochromator. This energy correction improves the energy resolution of the XAFS spectrum because each pixel in the CMOS detector has a very small vertical acceptance of ~0.5 µrad. A data analysis system has also been developed to automatically determine the energy of the absorption edge. This allows the chemical species to be mapped based on the XANES feature over a wide area of 4.8 mm (H) × 3.6 mm (V) with a resolution of 10 µm × 10 µm. The system has been applied to the chemical state mapping of the Mn species in a LiMn2O4 cathode. The heterogeneous distribution of the Mn oxidation state is demonstrated and is considered to relate to the slow delocalization of Li+‐defect sites in the spinel crystal structure. The two‐dimensional‐imaging XAFS system is expected to be a powerful tool for analyzing the spatial distributions of chemical species in many heterogeneous materials such as battery electrodes.  相似文献   

18.
An in‐vacuum undulator (IVU) with a tapered configuration was installed in the 8C nanoprobe/XAFS beamlime (BL8C) of the Pohang Light Source in Korea for hard X‐ray nanoprobe and X‐ray absorption fine‐structure (XAFS) experiments. It has been operated in planar mode for the nanoprobe experiments, while gap‐scan and tapered modes have been used alternatively for XAFS experiments. To examine the features of the BL8C IVU for XAFS experiments, spectral distributions were obtained theoretically and experimentally as functions of the gap and gap taper. Beam profiles at a cross section of the X‐ray beam were acquired using a slit to visualize the intensity distributions which depend on the gap, degree of tapering and harmonic energies. To demonstrate the effect of tapering around the lower limit of the third‐harmonic energy, V K‐edge XAFS spectra were obtained in each mode. Owing to the large X‐ray intensity variation around this energy, XAFS spectra of the planar and gap‐scan modes show considerable spectral distortions in comparison with the tapered mode. This indicates that the tapered mode, owing to the smooth X‐ray intensity profile at the expense of the highest and most stable intensity, can be an alternative for XAFS experiments where the gap‐scan mode gives a considerable intensity variation; it is also suitable for quick‐XAFS scanning.  相似文献   

19.
Apparatus for a technique based on the dispersive optics of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐5 of the Synchrotron Radiation Center of Ritsumeikan University. The vertical axis of the cross section of the synchrotron light is used to disperse the X‐ray energy using a cylindrical polychromator and the horizontal axis is used for the spatially resolved analysis with a pixel array detector. The vertically dispersive XAFS (VDXAFS) instrument was designed to analyze the dynamic changeover of the inhomogeneous electrode reaction of secondary batteries. The line‐shaped X‐ray beam is transmitted through the electrode sample, and then the dispersed transmitted X‐rays are detected by a two‐dimensional detector. An array of XAFS spectra in the linear footprint of the transmitted X‐ray on the sample is obtained with the time resolution of the repetition frequency of the detector. Sequential measurements of the space‐resolved XAFS data are possible with the VDXAFS instrument. The time and spatial resolutions of the VDXAFS instrument depend on the flux density of the available X‐ray beam and the size of the light source, and they were estimated as 1 s and 100 µm, respectively. The electrode reaction of the LiFePO4 lithium ion battery was analyzed during the constant current charging process and during the charging process after potential jumping.  相似文献   

20.
A double flourescence scheme for detecting XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure) signals from a dilute species in a bulk competing flourescent matrix is reported. The new scheme has been demonstrated for the case of a Western Australian mineral specimen containing ~ 900 ppm of Au, and is particularly suitable for chemical and structural investigation of low concentration species in a matrix of similar, but slightly lower atomic number(s). The technique has the advantage of largely eliminating unwanted background arising from the bulk matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号