首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In recent years, increasing attention has been devoted to X‐ray phase contrast imaging, since it can provide high‐contrast images by using phase variations. Among the different existing techniques, Zernike phase contrast microscopy is one of the most popular phase‐sensitive techniques for investigating the fine structure of the sample at high spatial resolution. In X‐ray Zernike phase contrast microscopy, the image contrast is indeed a mixture of absorption and phase contrast. Therefore, this technique just provides qualitative information on the object, which makes the interpretation of the image difficult. In this contribution, an approach is proposed for quantitative phase retrieval in X‐ray Zernike phase contrast microscopy. By shifting the phase of the direct light by π/2 and 3π/2, two images of the same object are measured successively. The phase information of the object can then be quantitatively retrieved by a proper combination of the measured images. Numerical experiments were carried out and the results confirmed the feasibility of the proposed method. It is expected that the proposed method will find widespread applications in biology, materials science and so on.  相似文献   

2.
X‐ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X‐rays is necessary for three‐dimensional structural studies of thick specimens with high‐Z elements. In this paper it is shown that full‐field X‐ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full‐field Zernike phase‐contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X‐ray energies between 2.5 keV and 4 keV is expected.  相似文献   

3.
Scanning X-ray microscopy focuses radiation to a small spot and probes the sample by raster scanning. It allows information to be obtained from secondary signals such as X-ray fluorescence, which yields an elemental mapping of the sample not available in full-field imaging. The analysis and interpretation from these secondary signals can be considerably enhanced if these data are coupled with structural information from transmission imaging. However, absorption often is negligible and phase contrast has not been easily available. Originally introduced with visible light, Zernike phase contrast(1) is a well-established technique in full-field X-ray microscopes for visualization of weakly absorbing samples(2-7). On the basis of reciprocity, we demonstrate the implementation of Zernike phase contrast in scanning X-ray microscopy, revealing structural detail simultaneously with hard-X-ray trace-element measurements. The method is straightforward to implement without significant influence on the resolution of the fluorescence images and delivers complementary information. We show images of biological specimens that clearly demonstrate the advantage of correlating morphology with elemental information.  相似文献   

4.
X-ray phase-contrast imaging has emerged as an important method for improving contrast and sensitivity in the field of X-ray imaging. This increase in the sensitivity is attributed to the fact that, in the hard X-ray regime, the phase shift is more prominent as compared with the attenuation for materials having a low X-ray absorption coefficient. Among all the methods using the X-ray phase-contrast technique, in-line phase-contrast imaging scores over the other methods in terms of ease of implementation and efficient use of available X-ray flux. In order to retrieve the projected phase map of the object from the recorded intensity pattern, a large number of algorithms have been proposed. These algorithms generally use either the transport of intensity or contrast transfer function based approach for phase retrieval. In this paper it is proposed to use multiple wavelengths for phase retrieval using the contrast transfer function based formalism.  相似文献   

5.
Scanning X‐ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi‐keV range. In this paper the development of a segmented charge‐integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third‐generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements.  相似文献   

6.
邵其刚  陈健  Faiz Wali  鲍园  王志立  朱佩平  田扬超  高昆 《中国物理 B》2016,25(10):108702-108702
We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method.  相似文献   

7.
Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique.By using two-dimensional(2D) gratings,the observable contrast is extended to two refraction directions.Recently,we have developed a novel reverse-projection(RP) method,which is capable of retrieving the object information efficiently with one-dimensional(1D) grating-based phase contrast imaging.In this contribution,we present its extension to the 2D grating-based X-ray phase contrast imaging,named the two-dimensional reverseprojection(2D-RP) method,for information retrieval.The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption,the horizontal and the vertical refraction images.The obtained information can be used for the reconstruction of the three-dimensional phase gradient field,and for an improved phase map retrieval and reconstruction.Numerical experiments are carried out,and the results confirm the validity of the 2D-RP method.  相似文献   

8.
X射线光栅微分相位衬度成像技术可以观察到常规吸收衬度成像难以分辨的弱吸收物质的精细结构信息,因而在医学、材料学等研究领域具有巨大的应用前景.但传统的X射线光栅微分相位衬度成像技术由于采用分析光栅作为空间滤波器,需要采用相位步进法扫描分析光栅来获得样品的多张投影图像才能够分离出样品的吸收、折射和散射信息,因此存在样品曝光时间长、辐射剂量高以及X射线光通量利用率低等问题,限制了其在各个学科领域的应用研究.为克服上述问题,本文提出一种基于免分析光栅相位衬度成像系统的一次曝光样品信息提取算法.该算法只需要利用一块相位光栅,进而采用高分辨探测器进行样品投影数据的一次采集即可提取样品的吸收、折射和散射信息.理论和模拟研究结果表明:与传统相位步进法相比,该算法具有样品信息提取精度高,且不受光栅的自成像周期需为探测器像素尺寸的整数倍条件的限制.此外,该算法还能够有效地减少对生物样品的辐射损伤,因此在生物医学成像等研究领域中具有广泛的应用前景.  相似文献   

9.
荣锋  谢艳娜  邰雪凤  耿磊 《物理学报》2017,66(1):18701-018701
X射线光栅相衬成像存在系统复杂、成像效率低、步进精度要求高、光栅加工难度大等问题.本文设计了一种双能阵列X射线源和双能分析光栅,并应用于X射线光栅相衬成像,提出了一种双能X射线光栅相衬成像系统,阐述了该成像系统的成像原理和相位信息提取方法.提出的成像系统不需要精密步进平台,精简了成像系统,避免了步进误差导致的成像质量降低问题;两次曝光就可以成像,提高了成像效率;双能阵列X射线源、双能分析光栅的应用避免了源光栅、分析光栅难以加工的问题.对提出的成像系统及其相位提取方法进行了仿真,仿真结果显示成像系统可以正常成像,提取到的检测样本的X射线相衬成像相位一阶导数分布与相关文献实验所得结果一致.  相似文献   

10.
We present several successful test cases of using photoelectron emission microscopy (PEEM) for photon energy up to 25 keV. First, the full extended X-ray absorption fine structure analysis was implemented in areas as small as 100 μm2 for transition-metal K edge absorption spectra and, therefore, demonstrated the feasibility of combining structural and chemical analysis with hard-X-ray absorption spectroscopy with high lateral resolution. We also show that PEEM can be used in a transmission (radiography) mode as an imaging detector for hard-X-ray. This approach again leads to the unprecedented 0.3 μm lateral resolution, particularly critical for the use of coherence-based phase contrast techniques in real time X-ray radiology.  相似文献   

11.
We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method.  相似文献   

12.
X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. For light elements such as carbon, hydrogen and oxygen, the phase-shift term can be up to 1000 times greater than the absorption term in the hard X-ray energy region. So XPCI has attracted much attention in recent years. Various methods for XPCI have been proposed and demonstrated on synchrotron devices and other X-ray sources[1―13], particularly the in-line metho…  相似文献   

13.
微焦点X射线源类同轴相衬成像   总被引:2,自引:0,他引:2  
禹爱民  李政  章迪  黄志峰 《中国物理 C》2006,30(11):1119-1122
微焦点X射线源相衬成像是利用微焦点X射线源透过样品后携带的相位信息对样品内部结构成像. 通过获取相面上的强度信息利用相位复原方法可以得到物体内部的相位信息. 获取了不同放大倍数下的蚂蚁图像, 通过强度传播方程(Transport of Intensity Equation, TIE)方法得到了蚂蚁的相衬图像, 采用 边缘可见度(Edge Visibility)方法和熵法比较了不同放大倍数下的成像效果以及复原前后图像质量.  相似文献   

14.
理论分析了X射线衍射位相成像和近场位相恢复算法。定义了一个最佳成像距离,给出了基于最佳成像距离和特征空间频率的衍射场光强分布新的表达形式。基于模拟位相物体给出了数值模拟结果。由此得出了探测距离和多色辐照对相衬图像和位相恢复结果的影响。本文给出的结果将对同轴x射线相衬成像实验具有一定的指导作用。  相似文献   

15.
X射线同轴轮廓成像中影响成像质量的若干因素研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用数字模拟方法较为系统地研究了光子能量、样品直径和散射强度对成像质量的影响,克服了已有实验结果的局限性.研究得到成像质量随光子能量的变化关系,模拟结果与已有实验结果相符.研究发现,当其他成像参数不变时,同一样品存在多个光子能量可实现相近的成像质量,且成像质量都较好,这可用于定量相衬成像中多图重构时图像的选择,也为对辐射剂量有要求的样品提供理论依据.得到了不同直径样品在成像质量最佳时所对应的样品到探测器距离,发现这一距离随样品直径的增加而增加.研究了样品厚度或折射率变化导致的散射X射线对成像质量的影响,发 关键词: X射线同轴轮廓成像 成像质量 X射线散射  相似文献   

16.
硬X射线相位光栅的设计与研制   总被引:1,自引:0,他引:1       下载免费PDF全文
刘鑫  雷耀虎  赵志刚  郭金川  牛憨笨 《物理学报》2010,59(10):6927-6932
针对在普通实验室和医院实现40—100keVX射线相衬成像的需求,考虑到成像系统参数、X射线源空间相干特性及光栅衍射效率,设计出硅基相位光栅结构参数.利用我们已发展的光助电化学刻蚀技术研制出直径为5英寸的相位光栅,其空间周期为5.6μm,线宽为2.8μm,深度为40—70μm.在理论分析的基础上,通过提高硅片两端有效工作电压和修正Lehmann电流密度公式,解决了实际刻蚀过程中出现的钻蚀问题.由实验结果可知,本方案对制作大面积高精度相位光栅十分有效。  相似文献   

17.
理论分析了利用X射线同轴离焦相衬成像法测量金黑腔内塑料中心微球位置的可行性,在此基础上进行了实验研究。实验结果证明,由于低Z低密度材料对高能X射线有相位调制作用,因此仍能够形成一定的图像反差,这种效应并不依赖X射线的能量,因此在一定的尺度范围内,可以实现高Z高密度材料与低Z低密度材料在高能X射线下同时成像,克服了传统吸收成像的不足,最终实现了内爆靶装配参数的精密检测。  相似文献   

18.
通过解析分析和数值模拟,比较了钛K线(4.5 keV)与铜K线(8.0 keV)等X射线源背光透视物体情况下,菲涅耳波带板直接成像与投影式相衬成像对被透视物体的空间分辨能力。结果表明,波带板成像可实现优于1 m的高空间分辨能力,而且使用较大尺度背光源更有利于成像。对于高透射或弱吸收的透视物体,波带板难以成像,可采用投影式相衬成像实现m级空间分辨。计入了以前文献没有考虑到的更高阶影响后,解析给出了点光源照射下相衬像的强度分布与对比度。模拟了微焦点X射线源照射存在厚度起伏的薄膜靶以及密度空间调制靶的相衬成像,点光源情况下模拟结果和解析结果相符。讨论了光源大小、成像距离等参数对相衬成像对比度和空间分辨能力的影响,结果表明,通过减小光源尺度和调节物体到探测面的距离,空间分辨能力可优化到1~4 m。  相似文献   

19.
The X-ray absorption in a 5 m thick Ni foil for energies from 8.2 keV to 8.8 keV was measured by the photoacoustic method using a gas-microphone-cell. Results are presented for both photoacoustic amplitude and phase as a function of incident photon energy. The absorption fine structure above the NiK-edge is clearly resolved. The data are compared with a simple theory for the signal generation, and discrepancies are explained by discussing the various energy dissipation channels following the X-ray absorption.  相似文献   

20.
A new phase contrast microscopy technique for halo reduction is proposed. This technique is based on an apodization method combined with the Zernike phase contrast method. Although it has been a difficult theoretical problem, the proposed technique achieves halo reduction by considering angles of diffraction and phase differences. The technique utilizes an apodized phase plate consisting of a quarter wave phase shift ring with a 25% transmittance, and a pair of adjacent rings, which have 50% transmittance. This element is placed at the back focal plane of the objective. The result is startling, halo reduced images of phase objects providing enhanced inner details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号