首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We report the direct covalent functionalization of silicon and diamond surfaces with short ethylene glycol (EG) oligomers via photochemical reaction of the hydrogen-terminated surfaces with terminal vinyl groups of the oligomers, and the use of these monolayers to control protein binding at surfaces. Photochemical modification of Si(111) and polycrystalline diamond surfaces produces EG monolayers linked via Si-C bond formation (silicon) or C-C bond formation (diamond). X-ray photoelectron spectroscopy was used to characterize the monolayer composition. Measurements using fluorescently labeled proteins show that the EG-functionalized surfaces effectively resist nonspecific adsorption of proteins. Additionally, we demonstrate the use of mixed monolayers on silicon and diamond and apply these surfaces to control specific versus nonspecific binding to optimize a model protein sensing assay.  相似文献   

2.
Oligo(ethylene glycol)-terminated thin films were prepared by photo-induced hydrosilylation of alpha-hepta-(ethylene glycol) methyl omega-undecenyl ether (EG(7)) on hydrogen-terminated silicon (111) and (100) surfaces. Their resistance to protein adsorption, and stabilities (from hours to days) under a wide variety of conditions, such as air, water, biological buffer, acid, and base, were investigated using contact-angle goniometry and ellipsometry techniques. Results indicated higher stability of the films chemisorbed on Si(111) than on Si(100). Furthermore, micron-sized patterns were fabricated on the films via AFM anodization lithography. Using atomic force microscopy (AFM) and fluorescence microscopy, we demonstrated that various proteins including fibrinogen, avidin, and bovine serum albumin (BSA) predominately adsorbed onto the patterns, but not the rest of the film surfaces.  相似文献   

3.
Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films were characterized by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). About 35% of the peripheral amines of the dendrimers were reacted with N-hydroxysuccinimide-terminated EG(n) derivatives (NHS-EG(n)). The dendrimer films showed improved stability over octadecanethiolate SAMs on gold in hot solvents, attributed to the formation of multiple amide bonds per PAMAM unit with underlying NHS-activated MUA monolayer. The EG(n)-attached PAMAM surfaces with n = 3 reduced the adsorption of fibrinogen to approximately 20% monolayer, whereas 2-3% for n = 4 or 6. The dendrimer films with various densities of EG(n) molecules on PAMAM surfaces were prepared by immersion of the NHS-terminated MUA-functionalized gold substrates in ethanolic solutions containing PAMAM and NHS-EG(n) of various mole ratios. The density (r) of the EG(n) molecules on the PAMAM surfaces is consistent with the mole ratio (r') of NHS-EG(n)/free amine of PAMAM in solutions. The resistance to protein adsorption of the resulting surfaces is correlated with the surface density and the length of the EG chains. At their respective r, the EG(n)-modified dendrimer films resisted approximately 95% adsorption of fibrinogen on gold surfaces. Finally, the specific binding of avidin to the approximately 5% and approximately 40% biotinylated EG3 dendrimers (surface density of biotin with respect to the total number of terminal amino groups on PAMAM G5) gave rise to about 50% and 100% surface coverage by avidin, respectively.  相似文献   

4.
Monolayers from the newly synthesized compound methoxy-tri(ethylene glycol)-undecenyldimethylchlorosilane (CH3O(CH2CH2O)3(CH2)11Si(CH3)2Cl, MeO(EG)3C11DMS) and dodecyldimethylchlorosilane (DDMS), both pure and mixed, were prepared by self-assembly from organic solution in the presence of an organic base. The films obtained were characterized by advancing and receding contact angle measurements and ellipsometry to confirm the formation of self-assembled monolayers (SAMs). The resulting data on the covalently attached dimethylsilanes were compared to known oligo(ethylene glycol) (OEG)-terminated SAM systems based on terminal alkenes, thiolates or trihydrolyzable silanes. The composition of the mixed SAMs was found to depend directly and linearly on the composition of the silanization solution. Enhanced protein repellent properties were found for the SAMs using a variety of proteins, including the Ras Binding Domain (RBD), a protein with high relevance for cancer diagnostics. Roughly a RBD protein monolayer amount was adsorbed to silicon oxide surfaces silanized with DDMS or non-silanized silicon wafers, and in contrast, no RBD was adsorbed to surfaces silanized with MeO(EG)3C11DMS or to mixed monolayers consisting of DDMS and MeO(EG)3C11DMS if the content of OEG-silane overcame a critical content of X(EG) approximately 0.9.  相似文献   

5.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

6.
We present a novel approach for preparation of nanometric protein arrays, based on binding of avidin molecules to nanotemplates generated by conductive AFM lithography on robust oligo(ethylene glycol)-terminated monolayers on silicon (111) surfaces that are protein-resistant. We showed that only biotinated-BSA but not the native BSA bind to the avidin arrays and that the resulting arrays of biotinated BSA could bind avidin to form protein dots with a feature size of approximately 30 nm. This result demonstrates that the avidin array may serve as templates for preparation of nanoarrays of a wide variety of biotin-tagged proteins for studying their interactions with other protein molecules at nanoscale.  相似文献   

7.
Micro- and nanopatterns of biomolecules on inert, ultrathin platforms on nonoxidized silicon are ideal interfaces between silicon-based microelectronics and biological systems. We report here the local oxidation nanolithography with conductive atomic force microscopy (cAFM) on highly protein-resistant, oligo(ethylene glycol) (OEG)-terminated alkyl monolayers on nonoxidized silicon substrates. We propose a mechanism for this process, suggesting that it is possible to oxidize only the top ethylene glycol units to generate carboxylic acid and aldehyde groups on the film surface. We show that avidin molecules can be attached selectively to the oxidized pattern and the density can be varied by altering the bias voltage during cAFM patterning. Biotinylated molecules and nanoparticles are selectively immobilized on the resultant avidin patterns. Since one of the most established methods for immobilization of biomolecules is based on avidin-biotin binding and a wide variety of biotinylated biomolecules are available, this approach represents a versatile means for prototyping any nanostructures presenting these biomolecules on silicon substrates.  相似文献   

8.
We report measurements of the orientations and azimuthal anchoring energies of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) on polycrystalline gold films that are deposited from a vapor at an oblique angle of incidence and subsequently decorated with organized monolayers of oligomers of ethylene glycol. Whereas the gold films covered with monolayers presenting tetra(ethylene glycol) (EG4) lead to orientations of 5CB that are perpendicular to the plane of incidence of the gold, monolayers presenting tri(ethylene glycol) (EG3) direct 5CB to orient parallel to the plane of incidence of the gold during deposition of the gold film. We also measure the azimuthal anchoring energy of the 5CB to be smaller on the surfaces presenting EG3 (3.2 +/- 0.8 microJ/m2) as compared to EG4 (5.5 +/- 0.9 microJ/m2). These measurements, when combined with other results presented in this paper, are consistent with a physical model in which the orientation and anchoring energies of LCs on these surfaces are influenced by both (i) short-range interactions of 5CB with organized oligomers of ethylene glycol at these surfaces and (ii) long-range interactions of 5CB with the nanometer-scale topography of the obliquely deposited films. For surfaces presenting EG3, these short- and long-range interactions oppose each other, leading to small net values of anchoring energies that we predict are dependent on the level of order in the EG3 SAM. These measurements provide insights into the balance of interactions that control the orientational response of LCs to biological species (proteins, viruses, cells) on these surfaces.  相似文献   

9.
This work presents a strategy of using mixed monolayer protected nanoparticles for specific interactions with target biological molecules. The mixed monolayer is composed of a shielding component and a capture component. The shielding component utilizes ethylene glycol oligomers to prevent nonspecific binding with biomolecules. The capture component is chosen to specifically interact with the target of interest, such as a protein molecule. Such a concept was demonstrated by two synthetic systems. The first one is gold nanoparticles protected by a mixed monolayer of tri(ethylene glycol) thiol (EG(3)-SH) and tiopronin (Tp), which was prepared by a one-step synthesis. Surface chemical composition studies using (1)H NMR spectroscopy revealed that the reactivity of EG(3)-SH is 3 times as high as that of Tp in the nanoparticle formation. Gel electrophoresis analysis identified a critical ratio of (EG(3)-S-)/Tp on the nanoparticle surface above which no nonspecific binding occurred. By further derivatizing Tp into a biotin group, we synthesized Au(-S-EG(3))(n)/Tp-biotin particles that bind specifically to streptavidin with negligible nonspecific binding. The second system is gold nanoparticles protected by a mixed monolayer of EG(3)-SH and glutathione (GSH). By controlling the feeding ratio of EG(3)-SH and GSH, we made Au(-S-EG(3))(n)/GSH particles that bind specifically to gultathione-S-transferase (GST) with negligible nonspecific binding.  相似文献   

10.
With today's developments of biosensors and medical implants comes the need for efficient reduction of nonspecific binding. We report on a comparison of the ability of traditionally used blocking agents and poly(ethylene glycol) (PEG) derivatives to prevent protein adsorption on both gold and polystyrene surfaces. The adsorption kinetics of blocking molecules and proteins was monitored gravimetrically using quartz crystal microbalance with dissipation (QCM-D). The resistance to nonspecific adsorption was evaluated on gold and polystyrene surfaces coated with bovine serum albumin (BSA) or casein, gold coated with three different 6-11 ethylene glycol (EG) long hydroxyl- or methoxy-terminated PEG-thiolates and polystyrene blocked with a PLL-g-PEG or three different 12 EG long benzyl-PEG-derivatives. The prevention of protein adsorption on the coated surfaces was evaluated by monitoring the mass uptake at the addition of both pure prostate specific antigen (PSA) and seminal plasma. We demonstrate that on pure gold the PEG-thiols are superior to the other blocking molecules tested, with the end group and length of the PEG-thiols used being of minor importance. On polystyrene surfaces blocking with PLL-g-PEG, BSA and casein gave the best results. These results have an impact on further development of an optimized immunoassay protocol.  相似文献   

11.
Liposomes with encapsulated carboxyfluorescein were used in an affinity-based assay to provide signal amplification for small-volume fluorescence measurements. Microfluidic channels were fabricated by imprinting in a plastic substrate material, poly(ethylene terephthalate glycol) (PETG), using a silicon template imprinting tool. Streptavidin was linked to the surface through biotinylated-protein for effective immobilization with minimal nonspecific adsorption of the liposome reagent. Lipids derivatized with biotin were incorporated into the liposome membrane to make the liposomes reactive for affinity assays. Specific binding of the liposomes to microchannel walls, dependence of binding on incubation time, and nonspecific adsorption of the liposome reagent were evaluated. The results of a competitive assay employing liposomes in the microchannels are presented.  相似文献   

12.
It has been reported that protein adsorption on single-walled carbon nanotube field effect transistors (FETs) leads to appreciable changes in the electrical conductance of the devices, a phenomenon that can be exploited for label-free detection of biomolecules with a high potential for miniaturization. This work presents an elucidation of the electronic biosensing mechanisms with a newly developed microarray of nanotube "micromat" sensors. Chemical functionalization schemes are devised to block selected components of the devices from protein adsorption, self-assembled monolayers (SAMs) of methoxy(poly(ethylene glycol))thiol (mPEG-SH) on the metal electrodes (Au, Pd) and PEG-containing surfactants on the nanotubes. Extensive characterization reveals that electronic effects occurring at the metal-nanotube contacts due to protein adsorption constitute a more significant contribution to the electronic biosensing signal than adsorption solely along the exposed lengths of the nanotubes.  相似文献   

13.
Vibrational sum-frequency generation (VSFG) was used to investigate the conformational changes in self-assembled monolayers (SAMs) of (1-mercaptoundec-11-yl) hexa(ethylene glycol) monomethylether (EG6-OMe) on gold when exposed to liquid water. VSFG spectra of the EG6-OMe SAMs were recorded before, during, and after exposure of the films to water and after a subsequent evacuation step. While in contact with water the entire ethylene glycol chains are found in a random, solvated state, after removal from the fluid water molecules remain absorbed only at the terminal groups of the film giving rise to distinct conformational changes. After evacuation, the structure of the EG6-OMe SAM reverts to its original state, indicating that water has been removed from the monolayer. Our findings support recent ab initio calculations and Monte Carlo simulations on the interaction of ethylene glycol-terminated monolayers with water.  相似文献   

14.
Thermoresponsive polymeric colloids attract great attention in several biotechnological applications owing to their ability to manipulate drug release characteristics in a controlled manner. Majority of these applications utilized N‐isopropylacrylamide (NIPAM)‐based particles for controlled drug release. Despite its advantages, such as easy chemical modification and well‐documented literature, a potentially important bottleneck for NIPAM in biological applications is its tendency for nonspecific protein adsorption. Herein, we report a simple way to prepare novel thermoresponsive colloids composed of oligo(ethylene glycol) side chains via precipitation polymerization technique. In addition to displaying highly reversible thermal response, these particles also have considerably low nonspecific protein adsorption when compared with NIPAM counterparts. These crosslinked poly(ethylene glycol) ethyl ether methacrylate particles were characterized using dynamic light scattering and transmission electron microscopy. The effects of co‐monomer, crosslinker and initiator on particle characteristics were investigated. Finally, particle toxicity studies were carried out using 3T3 fibroblast cell lines in MTT cytotoxicity assay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The modification of silicon oxide with poly(ethylene glycol) to effectively eliminate protein adsorption has proven to be technically challenging. In this paper, we demonstrate that surface-initiated atom transfer radical polymerization (SI-ATRP) of oligo(ethylene glycol) methyl methacrylate (OEGMA) successfully produces polymer coatings on silicon oxide that have excellent protein resistance in a biological milieu. The level of serum adsorption on these coatings is below the detection limit of ellipsometry. We also demonstrate a new soft lithography method via which SI-ATRP is integrated with microcontact printing to create micropatterns of poly(OEGMA) on glass that can spatially direct the adsorption of proteins on the bare regions of the substrate. This ensemble of methods will be useful in screening biological interactions where nonspecific binding must be suppressed to discern low probability binding events from a complex mixture and to pattern anchorage-dependent cells on glass and silicon oxide.  相似文献   

16.
The strong surface hydration layer of nonfouling materials plays a key role in their resistance to nonspecific protein adsorption. Poly(sulfobetaine methacrylate) (polySBMA) is an effective material that can resist nonspecific protein adsorption and cell adhesion. About eight water molecules are tightly bound with one sulfobetaine (SB) unit, and additional water molecules over 8:1 ratio mainly swell the polySBMA matrix, which is obtained through the measurement of T(2) relaxation time by low-field nuclear magnetic resonance (LF-NMR). This result was also supported by the endothermic behavior of water/polySBMA mixtures measured by differential scanning calorimetry (DSC). Furthermore, by comparing both results of polySBMA and poly(ethylene glycol) (PEG), it is found that (1) the hydrated water molecules on the SB unit are more tightly bound than on the ethylene glycol (EG) unit before saturation, and (2) the additional water molecules after forming the hydration layer in polySBMA solutions show higher freedom than those in PEG. These results might illustrate the reason for higher resistance of zwitterionic materials to nonspecific protein adsorptions compared to that of PEGs.  相似文献   

17.
The surface immobilization of oligo- and poly(ethylene glycol) on solids is a widely used approach to prevent the nonspecific adsorption of proteins, bacteria, and cells. A novel tri(ethylene glycol) derivative, phosphoric acid-mono(22-carboxy-12,15,18,21-tetraoxadocosyl) ester, was synthesized with the aim to produce self-assembled monolayers (SAMs) on metal/metal oxide surfaces. This compound contains two reactive, terminal moieties: the phosphoric acid group as anchor to the surface, and the carboxylic group as linker for further attachment of molecules such as peptides and proteins to be present at the surface. The adsorption on titanium-dioxide-coated substrates was studied quantitatively and the resulting SAMs were characterized by angle-dependent X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. XPS data showed that the monomolecular layer is attached with the phosphate group to the substrate, but not fully ordered. The dry adlayer thickness was determined to be 13.4 A, which is less than expected for a densely packed monolayer. Surface concentration calculated from ellipsometry data resulted in a grafting density of 2.03 molecules/nm2.  相似文献   

18.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

19.
This study concerns the design of protein-resistant polymer adsorbed layers for the control of surface binding of biospecific recognition entities. Polymer surface layers were prepared using the adsorption of poly(allylamine hydrochloride) (PAH), poly(l-lysine) (PL), and branched and linear polyethyleneimine (PEI) and further modified by the covalent attachment of biotin for specific avidin attachment. The adsorption of PAH, PL, and PEI on silicon substrates was studied as a function of pH and ionic strength using ellipsometry. Average dry layer thicknesses of approximately 10, approximately 5, approximately 9, and approximately 3 A (+/-1 A) were obtained when polymer adsorption occurred from solutions at pH 9.5 that contained 0.5 M NaCl for PAH, PL, branched PEI, and linear PEI, respectively. These polymers showed significant differences in their efficiency to suppress nonspecific avidin adsorption. At low ionic strength, avidin adsorption occurred on all polymer-coated surfaces at basic pH values, despite the same positive electrostatic charge for protein globules and the surface. Though the net electrostatic repulsion between avidin molecules and branched PEI was efficiently screened in a protein solution of pH 7 and 0.15 M NaCl, branched-PEI coatings of high molecular weight were unique in their ability to provide avidin-resistant surfaces as a result of steric hindrance from the branched architecture of adsorbed polymer chains. All polymers studied were effective in suppressing avidin adsorption at pH 3 as a result of protonation of the avidin surface functional groups at this pH. Branched-PEI-coated surfaces were also effective for the suppression of smaller positively charged proteins such as lysozyme and ribonuclease A at pH 7 and 0.15 M NaCl. They were also resistant to the adsorption of negatively charged proteins such as BSA and fibrinogen at pH 7 and 0.75 M NaCl. Furthermore, by using PEI-modified protein-repellent surfaces, selective binding of avidin was achieved to surface-bound silver nanoparticles, which should provide a promising application for the label-free detection of biological species using surface-enhanced Raman scattering (SERS).  相似文献   

20.
The strong surface hydration layer of nonfouling materials plays a key role in their resistance to nonspecific protein adsorption. Poly(ethylene glycol) (PEG) is an effective example of materials that can resist nonspecific protein adsorption and cell adhesion. Thus, the strong interaction between water molecules and PEG was investigated through each T(2) component in water/PEG mixtures using multiexponential inversion of T(2) relaxation time measured by the Carr-Purcell-Meiboom-Gill (CPMG) sequence of low-field nuclear magnetic resonance (LF-NMR). Results show that about one water molecule is tightly bound with one ethylene glycol (EG) unit, and additional water molecules over 1:1 ratio mainly swell the PEG matrix and are not tightly bound with PEG. This result was also supported by the endothermic behavior of water/PEG mixtures measured by differential scanning calorimetry (DSC). It is believed that the method developed could be also applied to investigate various interactions between macromolecules and other small molecules without using deuterium samples, which might open a novel route to quantitatively measure guest-host interactions in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号