首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1–2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone. Received: 26 August 1996/Accepted: 31 March 1997  相似文献   

2.
Sound scattering by an elastic spherical shell is analysed using linear acoustics and linear structural dynamics. It is suggested to utilize the shell’s structural dynamics to reduce or even eliminate the scattered sound field, thus making it practically acoustically invisible. This can be achieved using a prescribed external pressure distribution acting on the shell’s wall. Exact analytical solutions are found for that external pressure distribution, eliminating the scattered wave when the sphere is in free space or near a free surface and is subject to an incoming planar monochromatic sound wave. The latter is assumed to propagate in a direction perpendicular to the free surface (if it exists). The case of a few pressure-actuators acting on the shell’s wall is also modelled and an optimal solution which reduces the sound scattering by these actuators is found. An aluminium shell of 1 m radius and 5 mm thickness, situated in fresh water is analysed for sound frequencies of up to 10 kHz. The scattered wave fields are presented as well as the external pressure distributions that eliminate these scattered sound field, i.e. achieving acoustic cloaking. Significant reduction in the scattered wave energy and the target strength of more than 10 dB are also realized using a few pressure-actuators as long as the distance between the actuators is no more than three times the incident wave length for the investigated cases.  相似文献   

3.
An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated.  相似文献   

4.
Vortex sound   总被引:1,自引:0,他引:1  
Vortex motion is the only source of aerodynamic sound production in low Mach number flow: the unsteady part of the vorticity distribution contributes linearly to the sound field. The following fundamental model flows, which illustrate the vorticity as the predominant sound source in unsteady flows, are discussed: An initially planar elliptic vortex; two identical coaxial initially elliptic vortex rings, where a special case is the leap-frogging of two identical circular rings. For head-on collision of two identical circular vortex rings and for several cases of vortex-body interaction good agreement between theory and experiment exists. If the Mach number is not low, other mechanisms have also to be considered. Here the theory is not yet fully developed. Experimental results for a vortex-airfoil interaction in transonic flow show that local flow separation and boundary layer as well as compressibility effects play a basic role. However, if the motion of vorticity would be known in subsonic flow, essential parts of the sound field could be calculated by the theory. — In addition, it is shown that the general theory is well suited to provide a better understanding of the scattering of sound waves by vortex motion, at least for long wave lengths.  相似文献   

5.
一种考虑薄壁散射效应的声学计算模型   总被引:1,自引:1,他引:0  
采用薄壁边界元/FW-H理论混合方法建立了考虑薄壁声学散射效应的数值计算模型.这种声学计算模型可以预测存在薄壁如风扇机匣、蜗壳等条件下的声波的传播及散射问题.计算模型的建立主要包含噪声源的计算和声源的传播两方面:首先建立FW-H的频域方程,并采用计算流体力学方法计算流场,通过流场数据计算气动噪声源;然后采用薄壁面边界元法计算固壁对声波的散射,并计算声波在固壁散射后的声场分布.数值计算结果和实验结果及经典的叶轮机管道风扇噪声理论进行了对比,结果表明,这种计算模型与理论计算结果及实验结果吻合较好,可以准确的预测机匣壁的散射效应对声源传播的影响.  相似文献   

6.
吴国荣  钟伟芳 《力学学报》2004,36(1):101-105
应用分形有限元方法结合边界元方法研究了二维含裂纹结构和声耦合问题.采用二级分形有限元方法对含裂纹的弹性结构体进行离散处理,这样可以使得自由度数大大地减少;无限大外域声场的计算使用边界元方法,可以自动满足无穷远辐射条件.数值仿真算例结果表明:结构声耦合系统的共振频率随着裂纹深度的增加而下降;裂纹附近的声场所受的影响较为明显.  相似文献   

7.
8.
The results obtained by the authors in [1] are extended to the case of arbitrary angles of incidence of the external wave. This is not a trivial generalization, since the acoustic scattering undergoes a qualitative change. It is possible to distinguish two excitation channels: the first is connected with the diffraction of the acoustic wave by the spatial inhomogeneity resulting from the displacing action of the boundary layer, and the second with the presence of concentrated acoustic field sources associated with the scattering of the wave at the leading edge. The latter makes the principal contribution to the initial amplitude of the unstable modes when the angles of incidence of the sound are substantially different from zero. At low angles of incidence there is a singularity which can be revealed by introducing narrow intervals in the neighborhood of the limiting values of the wave numbers, where the two excitation channels are approximately equivalent. It is possible to obtain composite expressions for the initial amplitudes of the unstable modes uniformly valid for all angles of incidence of the acoustic wave.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 40–47, January–February, 1992.  相似文献   

9.
The modal acoustic radiation load on a spherical surface undergoing angularly periodic axisymmetric harmonic vibrations while immersed in an acoustic halfspace with a rigid (infinite impedance) planar boundary is analyzed in an exact fashion using the classical technique of separation of variables. The formulation utilizes the appropriate wave field expansions, the classical method of images and the appropriate translational addition theorem to simulate the relevant boundary conditions for the given configuration. The associated acoustic field quantities such as the modal impedance matrix and the modal acoustic radiation force acting on the spherical surface are determined. The analytical results are illustrated with a numerical example in which the spherical surface, excited in vibrational modes of various orders, is immersed near an impervious rigid wall. The presented solution could eventually be used to validate those obtained by numerical approximation techniques.  相似文献   

10.
Summary  This study provides a general analysis for scattering of a planar monochromatic compressional sound wave by a homogeneous, isotropic, viscoelastic, solid sphere immersed in an unbounded viscous, heat-nonconducting, compressible fluid. The dynamic viscoelastic properties of the spherical scatterer and the viscosity of the surrounding fluid are rigorously taken into account in the solution of the acoustic-scattering problem. Havriliak–Negami model for viscoelastic material behaviour along with the appropriate wave-harmonic field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in form of infinite series. Subsequently, the associated acoustic quantities such as the scattered far-field pressure directivity pattern, scattered intensity distribution, differential scattering cross section, and the acoustic radiation force are evaluated for given sets of viscoelastic material properties. Numerical results clearly indicate that, in addition to the traditional fluid viscosity-related mechanisms, the dynamic viscoelastic properties of the solid obstacle can be of major significance in sound scattering. Limiting cases are examined and fair agreements with well-known solutions are established. Received 15 January 2002; accepted for publication 2 July 2002 The authors wish to sincerely thank professors Daniel Levesque, Roderic Lakes, Yves Berthelot, S. Temkin, and Andrei Dukhin for valuable and productive consultations on dynamic theory of viscoelasticity and acoustics of (thermo)viscous media.  相似文献   

11.
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.  相似文献   

12.
针对阶梯圆柱形耦合声场建模问题,提出基于特征正交-里兹能量原理的声学建模方法.该方法利用二维特征正交多项式和周向傅里叶级数表征阶梯圆柱形耦合声场子分段的声压函数,从能量角度考虑邻近子声场间声学连续性条件,并结合里兹法获得耦合声场的声学特性.基于本建模方法对不同分段的耦合声场开展声学特性分析,结果表明,本建模方法在保证计算准确性的基础上有效提高了计算效率,且对任意阶梯分段的圆柱形耦合声场普遍适用;圆柱形耦合声场固有频率会随着腔体外径增大而普遍增大,而腔深的影响规律相反;降低声学边界阻抗可抑制声学响应幅值,为此类声场的噪声控制提供了设计依据.  相似文献   

13.
We present a finite element (FE) formulation of Lighthill's acoustic analogy for the hybrid computation of noise generated by turbulent flows. In the present approach, the flow field is computed using large eddy simulation and scale adaptive simulation turbulence models. The acoustic propagation is obtained by solving the variational formulation of Lighthill's acoustic analogy with the FE method. In order to preserve the acoustic energy, we compute the inhomogeneous part of Lighthill's wave equation by applying the FE formulation on the fine flow grid. The resulting acoustic nodal loads are then conservatively interpolated to the coarser acoustic grid. Subsequently, the radiated acoustic field can be solved in both time and frequency domains. In the latter case, an enhanced perfectly matched layer technique is employed, allowing one to truncate the computational domain in the acoustic near field, without compromising the numerical solution. Our hybrid approach is validated by comparing the numerical results of the acoustic field induced by a corotating vortex pair with the corresponding analytical solution. To demonstrate the applicability of our scheme, we present full 3D numerical results for the computed acoustic field generated by the turbulent flow around square cylinder geometries. The sound pressure levels obtained compare well with measured values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
An analytical calculation of the acoustic transmission loss of sound propagating through a thin cylindrically curved piezoelectric membrane, which is rigidly clamped at its straight ends, is presented. The membrane is placed inside an acoustic tube and connected to an active electric shunt circuit that behaves as a negative capacitor. A properly adjusted shunt circuit has a significant impact on the effective elastic stiffness of the piezoelectric membrane and, hence, influences the membrane acoustic reflectivity and transmission loss of sound. Such a setup represents a noise control system based on the principles of the active elasticity control of piezoelectric materials. The non-uniform radial motion of the clamped membrane and its interaction with the acoustic field and the electric shunt circuit are analyzed. The main objective of the calculations, which are based on Donnell’s theory, is the determination of the effects of the membrane clamps on the flexural motion of the membrane and, therefore, effects on the acoustic transmission loss of sound. Approximative formulae for the amplitude of the membrane displacement and the acoustic transmission loss of sound are expressed as well as the resonant frequencies of the uniform mode and flexural vibration modes.  相似文献   

15.
The mechanisms of generation and scattering of sound by a vortex ring are investigated on the basis of fluid dynamics. The vortex ring can serve as a simple dynamic model of the large-scale structures observed in shear flows. Moreover, it is probably the most easily studied vortex element that can be created experimentally. The sound scattering investigation also served to determine the extent to which the vortex is affected by sound, its selectivity with respect to such parameters as the acoustic frequency, the angle of incidence of the wave, etc. The perturbed motion is considered against the background of the steady-state motion of the ring. The perturbed motion in the vortex core is determined on the basis of linear incompressible fluid dynamics. Two terms of the expansion in the M number of the far acoustic field generated by the perturbations in the core are found in accordance with Lighthill's theory. The acoustic power and directivity of the radiation and the acoustic instability growth rate are calculated. It is shown that the scattering of sound by the vortex ring is a resonance effect, and the scattering amplitude near resonance is determined. The acoustic action on the hydrodynamic structure of the flow in the core of the ring is especially intense near the resonances and extends over a period short as compared with the characteristic time of the acoustic instability.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 83–95, May–June, 1987.  相似文献   

16.
采用SIMPLEC算法对Ghost叶轮的三维非定常流场进行了数值模拟。利用计算所得流场结果并结合Lighthill和Lowson声学方程计算了由叶片表面非定常脉动力产生的气动噪声。计算结果表明:气动噪声的峰值主要集中在基频及其谐波附近;与静止的点声源相比,运动的点声源不仅使声场存在明显的多普勒效应,还会使声场的强度产生较大的变化;但对转速恒定的旋转点声源,加速度的变化对声场的影响可以忽略;从声场的分布来看,整个旋转叶轮可以看成是一个按简谐变化的偶极子源,数值计算结果与理论分析的结果吻合良好。  相似文献   

17.
给出了一种基于UV-LIGA技术的静电悬浮转子微陀螺,提出了控制系统组成方案,为了实现转子的起支控制和稳定悬浮,模糊控制被应用于该系统中,首先,对轴向压膜阻尼和滑膜阻尼进行有限元分析,并用解析法进行分析,计算结果表明两种方法的一致性,从而得到阻尼的解析表达式。然后,建立了带偏置电压的双边支承下的数学模型,并对数学模型进行模糊控制仿真研究,仿真结果表明,相对于PID控制,模糊控制具有较强的鲁棒性,具有响应速度快,自适应能力强的优点。最后,设计了悬浮控制系统,给出了硬件和软件组成。  相似文献   

18.
The phenomenon of flow-excited acoustic resonance is a design concern in many engineering applications, especially when wakes of bluff bodies are encountered in ducts, piping systems, heat exchangers, and other confined systems. In this paper, the case of self-excited acoustic resonance of two side-by-side cylinders in a duct with cross-flow is investigated both numerically and experimentally for a single spacing ratio of T/D=2.5, where D is the diameter of the cylinders and T is the centre-to-centre distance between them. The numerical investigation is performed using a finite-volume method at a Reynolds number of 3.0×104 to simulate the unsteady flow field, which is then coupled with an imposed resonant sound field of the first acoustic cross-mode of the duct calculated through the use of Finite Element Analysis (FEA). The experimental investigation has been performed using phase-locked Particle Image Velocimetry (PIV) of the flow field during the occurrence of a self-excited acoustic resonance condition in the duct. The results of both methods reveal that the flow-excited acoustic resonance produces a strong oscillatory flow pattern in the cylinder wakes, with strong in-phase vortex shedding being synchronized by the acoustic resonance. The distribution and strength of the aeroacoustic sources and sinks within the flow field have been computed by means of Howe׳s theory of aerodynamic sound for both the experimental and numerical cases, with the results of the two methods comparing favourably, showing comparable trends in the oscillating flow fields, and very similar trends in the distribution of net acoustic power.  相似文献   

19.
The present paper describes a method to derive information about the acoustic emission of a flow using particle image velocimetry (PIV) data. The advantage of the method is that it allows studying sound sources, the related flow phenomena and their acoustic radiation into the far field, simultaneously. In a first step the time history of two-dimensional instantaneous pressure fields is derived from planar PIV data. In a successive step the Curle’s acoustic analogy is applied to the pressure data to obtain the acoustic radiation of the flow. The test cases studied here are two rectangular cavity flows at very low Mach number with different aspect ratios L/H. The main sound source is located at the cavity trailing edge and it is due to the impingement of vortices shed in the shear layer. It is shown that the flow emits sound with a main directivity in the upstream direction for the smaller aspect ratio and the directivity is more uniform for the larger aspect ratio. In the latter case the acoustic pressure spectra has a broader character due to the impact of the downstream recirculation zone onto the shear layer instabilities, destroying their regular pattern and alternating the main sound source.  相似文献   

20.
An elastic membrane backed by a fluid-filled cavity in an elastic body is set into an infinite plane baffle. A time harmonic wave propagating in the acoustic fluid in the upper half-space is incident on the plane. It is assumed that the densities of this fluid and the fluid inside the cavity are small compared with the densities of the membrane and of the elastic walls of the cavity, thus defining a small parameter . Asymptotic expansions of the solution of this scattering problem as →0, that are uniform in the wave number k of the incident wave, are obtained using the method of matched asymptotic expansions. When the frequency of the incident wave is bounded away from the resonant frequencies of the membrane, the cavity fluid, and the elastic body, the resultant wave is a small perturbation (the “outer expansion”) of the specularly reflected wave from a completely rigid plane. However, when the incident wave frequency is near a resonant frequency (the “inner expansion”) then the scattered wave results from the interaction of the acoustic fluid with the membrane, the membrane with the cavity fluid, and finally the cavity fluid with the elastic body, and the resulting scattered field may be “large”. The cavity backed membrane (CBM) was previously analyzed for a rigid cavity wall. In this paper, we study the effects of the elastic cavity walls on modifying the response of the CBM. For incident frequencies near the membrane resonant frequencies, the elasticity of the cavity gives only a higher order (in ) correction to the scattered field. However, near a cavity fluid resonant frequency, and, of course, near an elastic body resonant frequency the elasticity contributes to the scattered field. The method is applied to the two dimensional problem of an infinite strip membrane backed by an infinitely long rectangular cavity. The cavity is formed by two infinitely long rectangular elastic solids. We speculate on the possible significance of the results with respect to viscoelastic membranes and viscoelastic instead of elastic cavity walls for surface sound absorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号