首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel heterostructural TiO(2) nanocomposite, which consists of single-crystalline rutile TiO(2) nanorod decorated Degussa P25 nanoparticles, has been fabricated through a facile acidic hydrothermal method and successfully applied as the photoanodes for efficient dye-sensitized solar cells. The morphology, crystal structure, specific surface area and pore size distribution of the obtained nanocomposite were systematically investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption measurements. Under standard illumination conditions (AM 1.5, 100 mW cm(-2)), devices with these hybrid anodes exhibited considerably enhanced photocurrent density and overall conversion efficiency in comparison with that of the commercial Degussa P25 electrodes, which can be partially attributed to the light scattering effect in the long-wavelength region as evidenced from the incident photon-to-current conversion efficiency (IPCE) response and the diffuse reflectance spectroscopy. More importantly, devices employing these hybrid anodes have demonstrated extended electron lifetimes and larger electron diffusion coefficient as validated by the intensity-modulated photocurrent/photovoltage spectroscopy measurements, which can be mainly ascribed to the fast electron transport and collection superiority of the single-crystalline nanorods.  相似文献   

2.
Fibrous TiO2-SiO2 nanocomposite photocatalyst   总被引:1,自引:0,他引:1  
The electrospinning method is employed to prepare a fibrous TiO2-SiO2 (Ti : Si = 1 : 2) nanocomposite photocatalyst, in which Degussa P25 T i O2 nanoparticles are embedded inthe body of SiO2 fibers and which shows good photocatalytic activity due to its 3-D open structure, as evidenced by photocatalytic reduction of silver ions and decomposition of acetaldehyde.  相似文献   

3.
Nanocrystalline TiO2 was synthesized by the solution combustion method using titanyl nitrate and various fuels such as glycine, hexamethylenetetramine, and oxalyldihydrazide. These catalysts are active under visible light, have optical absorption wavelengths below 600 nm, and show superior photocatalytic activity for the degradation of methylene blue and phenol under UV and solar conditions compared to commercial TiO2, Degussa P-25. The higher photocatalytic activity is attributed to the structure of the catalyst. Various studies such as X-ray diffraction, Raman spectroscopy, Brunauer-Emmett-Teller surface area, thermogravimetric-differential thermal analysis, FT-IR spectroscopy, NMR, UV-vis spectroscopy, and surface acidity measurements were conducted. It was concluded that the primary factor for the enhanced activity of combustion-synthesized catalyst is a larger amount of surface hydroxyl groups and a lowered band gap. The lower band gap can be attributed to the carbon inclusion into the TiO2 giving TiO(2-2x)C(x) VO2**.  相似文献   

4.
Three commercial TiO2 compounds (Degussa P25, Sachtleben UV100, and Millenium PC50) and their platinized forms have been studied by the time-resolved microwave conductivity (TRMC) method to follow their charge-carrier dynamics and to relate it to the photocatalytic activity for phenol degradation in TiO2 aqueous suspensions. The degradation reaction has been studied in detail, following the time evolution of the concentration of phenol and its intermediates by liquid chromatography. The results show that platinization has a distinct influence on the commercial compounds, decreasing globally the activity of P25 and increasing the activity of PC50 and UV100. An influence of charge-carrier lifetimes on the photoactivity of pure and platinized TiO2 samples has been evidenced.  相似文献   

5.
不同紫外光源下MnO2对TiO2光催化活性的影响   总被引:3,自引:0,他引:3  
采用动力学方法研究了3种紫外光源下MnO2颗粒物对TiO2光催化活性的影响, 使用的光源包括UV365/28 W, UV302/16 W和UV254/25 W, 实验用的MnO2包括α-MnO2, β-MnO2和δ-MnO2. 实验结果表明, 当水悬浮液中有MnO2颗粒物存在时, 在UV365/28W和UV302/16W两种紫外光源下TiO2光催化剂会失活, 而在UV254/25W紫外光源下TiO2光催化剂能基本保持稳定. TiO2光催化剂的稳定性与使用的紫外光源的波长有关.  相似文献   

6.
A novel method for preparing highly photoactive nano-sized TiO2 photocatalysts with anatase and brookite phases has been developed by hydrolysis of titanium tetraisoproproxide in pure water or a 1:1 EtOH-H2O solution under ultrasonic irradiation; the photocatalytic activity of TiO2 particles prepared by this method exceeded that of Degussa P25.  相似文献   

7.
Degradation tests in a photocatalytic membrane system have been carried out using TiO2 (Degussa P25) as catalyst and humic acid, organic dyes, 4-nitrophenol as pollutants. The influence of UV radiation and initial concentration of pollutant on the photodegradation rate were investigated in discontinuous and continuous systems. Experimental results showed that it is possible to obtain an efficient photocatalytic membrane process, but various parameters (e.g. pH) should be optimised to obtain high reaction rate and high membrane rejection of pollutants and their by-products.  相似文献   

8.
Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO(2)) films and molecular oxygen. TiO(2) films from three different starting materials (TiO(2) anatase colloidal paste and commercial anatase/rutile powders Degussa TiO(2) P25 and VP TiO(2) P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO(2) colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO(2) particles.  相似文献   

9.
ZnS nanoparticles were prepared and deposited on montmorillonite (MMT) in the presence of cetyltrimethylammonium (CTA). UV spectrometry and transmission electron microscopy (TEM) proved the formation of nanoparticles with diameters ranging from 3 nm to 5 nm. Selected-area electron diffraction (SAED) patterns revealed the presence of romboedric ZnS. The band gap energy of nanosize ZnS was estimated at 3.89 ± 0.03 eV. Photoluminescence spectra exhibited a strong emission band between 300 nm and 600 nm explained by the vacant ZnS nanostructure. The prepared ZnS-montmorillonite nanocomposite (ZnS-MMT) was used for the photocatalytic reduction of CO(2) providing a considerably high efficiency that exceeded 5-6-fold the results of commercial TiO(2) Degussa P25. The main reaction products were hydrogen and methane. Methanol and carbon oxide were also observed in about 7-fold lower amounts. The stability of ZnS against oxidation was confirmed by the determination of sulphate using capillary isotachophoresis.  相似文献   

10.
马艺  王秀丽  李灿 《催化学报》2015,(9):1519-1527
二十世纪八十年代以来,特别是近十年,光催化研究在利用可再生能源太阳能的道路上飞速发展。越来越多的研究表明,相结结构的构筑是有效提高半导体光催化剂性能的重要策略。其中, TiO2作为重要的模型光催化剂,其相关研究成果呈现出指数增长的趋势。本综述围绕TiO2模型光催化剂,主要介绍TiO2表面相结的研究成果,包括TiO2表面相的表征、锐钛矿:金红石TiO2相结用于光催化产氢研究、TiO2相结在光催化中作用的最新认识等。在表征方面,通过表面灵敏的紫外拉曼光谱研究了TiO2相变过程中表面相结构的变化,结合可见拉曼以及XRD表征揭示了TiO2独特的相变过程,即相变始于锐钛矿粒子的界面处,小粒子逐渐团聚为大粒子,致其相变从大粒子体相开始最终扩展到整个粒子。使用CO, CO2探针红外光谱,根据锐钛矿和金红石表面吸附物种的差异,进一步证实了锐钛矿:金红石表面相结结构,为紫外拉曼光谱的表面表征特性提供坚实证据。同时,利用发光光谱观察到锐钛矿晶相的可见发光带和金红石晶相的近红外发光带,并基于此给出了TiO2材料表面相结结构的荧光表征新方法。此外荧光光谱还提供了锐钛矿、金红石相中载流子动力学信息,揭示了束缚态在光催化中的作用。在光催化应用方面,观察到混相结构TiO2较单独锐钛矿及金红石相具有更高的光催化产氢活性,通过在较大金红石颗粒上担载纳米锐钛矿粒子,证明了相结结构在提高光催化活性中的核心作用,并首次提出了锐钛矿:金红石表面异相结结构概念,推断其对电荷分离的促进作用是最终提高反应活性的原因。之后将此概念应用到改善商品TiO2(P25)光催化活性中,通过可控热处理精细调控P25的表面相结构,在光催化重整生物质衍生物产氢实验中,成功将P25光催化产氢活性提高3?5倍。之后发展了新的TiO2表面控制方法,通过加入Na2SO4等相变控制剂,延缓了TiO2从锐钛矿向金红石的相变过程,在较高温度下实现TiO2相结结构的调控,最终可将P25光催化重整甲醇制氢的活性提高6倍,同时通过高分辨电镜清晰观察到锐钛矿:金红石相结的原子层生长接触。在相结作用机理方面,多种时间分辨光谱技术以及理论计算被用作探索锐钛矿:金红石相结处的电子转移机理。通过时间分辨红外光谱对TiO2表面相结结构作用的研究,特别是利用锐钛矿、金红石不同的瞬态吸收光谱特征,证明了锐钛矿:金红石相结处的载流子转移过程,存在锐钛矿向金红石的电子转移过程。模型光催化剂TiO2相结的研究成果,加深了对光催化机理的认识,促进新型高效光催化体系的设计合成。  相似文献   

11.
以钛酸四丁酯为原料, 离子液体1-乙基-3-甲基咪唑醋酸盐([EMIM]+AcO-)-水为混合溶剂, 通过低温水热法制备了锐钛矿相TiO2纳米晶. 用XRD、N2吸附-脱附、XPS及UV-Vis漫反射等技术对产物的晶相、比表面积、表面性质及光吸收性进行表征, 并以甲基橙水溶液为研究对象, 考察了产物的光催化活性及催化剂用量、溶液酸碱度对其的影响. 结果表明, 离子液体鄄水混合溶剂中反应24 h 所得到的TiO2具有较高光催化活性, 并明显优于Degussa P25, 这一结果可归因于其具有较高的锐钛矿含量和较大的比表面积.  相似文献   

12.
Carbon-doped anatase TiO(2) was prepared by a facile hydrothermal process without adding additional carbon source. The as-prepared sample shows highly efficient photocatalytic activity, which only requires 4min and is about 11 times higher than that of Degussa P25 TiO(2) in degradation of methyl orange (MO) dye under UV light irradiation. Moreover, a highly visible-light activity is also observed. UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy confirm that the carbon atoms are incorporated into the interstitial positions of TiO(2) lattice and form a strong interaction with titanium atoms and extend photoresponding range to 700nm. Surface photovoltage spectra (SPS) and transient photovoltage (TPV) suggest that the presence of interstitial carbons induce several localized occupied states in the gap, enhance the separation extent and restrain the recombination of the photo-induced electron and hole carriers in TiO(2).  相似文献   

13.
在室温条件下,利用超声波辐射方法快速合成了四方状BiOCl(BiOBr)纳米片光催化剂。应用N2-物理吸附、X射线粉末衍射、扫描电镜、透射电镜、紫外可见光谱等手段对催化剂进行了表征,并以波长为λ=365 nm的紫外光和420 nm<λ<660 nm的可见光为光源,评价了该催化剂光催化降解酸性橙Ⅱ的活性。表征结果表明,超声波辐射可加速BiOCl和BiOBr晶化过程,显著提高BiOCl和BiOBr的结晶度,并使其晶粒发生细化,提高催化剂的比表面积。活性测试表明,声化学合成样品的光催化活性优于普通搅拌制备的样品。其中BiOCl的紫外光催化活性高于商业TiO2(P25)光催化剂。  相似文献   

14.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

15.
Zinc oxide with excellent photocatalytic performance for the photodegradation of dyes (superior to Degussa P25 TiO(2)) could be easily prepared in large quantity by direct calcination of zinc acetate (Zn(Ac)(2)·2H(2)O).  相似文献   

16.
The reticular hierarchical structure of butterfly wings (Papilio Paris) is introduced as template for Au/TiO(2) photocatalyst by depositing the Au nanoparticles on TiO(2) matrix, which is carried out by a water-ethanol sol-gel procedure combined with subsequent calcination. The obtained Au/TiO(2) nanocomposites present the reticular hierarchical structure of butterfly wings, and Au nanoparticles with an average size of 7 nm are homogeneously dispersed in TiO(2) substrate. Benefiting from such unique reticular hierarchical structure and composition, the biomorphic Au/TiO(2) exhibits high-harvesting capability and presents superior photocatalytic activity. Especially, the biomorphic Au/TiO(2) at the nominal content of gold to titanium of 8 wt% shows the highest photocatalytic activity and can completely decompose methyl orange within 80 min, which is obviously higher than that of commercial Degussa P25 powders.  相似文献   

17.
The photocatalytic activity of meso-tetraphenylporphyrins with different metal centers (Fe, Co, Mn and Cu) adsorbed on TiO(2) (Degussa P25) surface has been investigated by carrying out the photodegradation of methyl orange (MO) under visible and ultraviolet light irradiation. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV (DRS-UV-vis) and infrared spectra. Copper porphyrin-sensitized TiO(2) photocatalyst (CuP-TiO(2)) showed excellent activity for the photodegradation of MO whether under visible or ultraviolet light irradiation. Natural Bond Orbital (NBO) charges analysis showed that methyl orange ion is adsorbed easier by CuP-TiO(2) catalyst due to the increase of induced interactions.  相似文献   

18.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100℃. When calcination temperatures are below 600℃, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700℃, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100℃, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400℃, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact t  相似文献   

19.
In this work, fullerene modified TiO(2) nanocomposites (denoted as C(60)/TiO(2)) with low C(60) loadings (0-1.5 wt.%) have been prepared by a simple hydrothermal method using tetrabutylorthotitanate (TBOT, Ti(OC(4)H(9))(4)) as the titanium precursor. The as-prepared C(60)/TiO(2) nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectrophotometry, nitrogen adsorption, and X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy. The formation of hydroxyl radicals (˙OH) on the surface of UV-illuminated TiO(2) is probed by photoluminescence using terephthalic acid as a probe molecule. Our results have demonstrated that C(60) molecules can be dispersed as a monolayer onto bimodal mesoporous TiO(2)via covalent bonding. The photocatalytic oxidation rate of gas-phase acetone over C(60)/TiO(2) nanocomposites is greater than that over pure TiO(2), commercial Degussa P25 (P25) and C(60)-TiO(2) counterparts prepared by simple impregnating mixing. In particular, 0.5 wt.% C(60)/TiO(2) nanocomposites show the greatest photocatalytic activity with the rate constant k exceeding that of P25 by a factor of 3.3. Based on the results of the current study, we propose that C(60) molecules doped onto TiO(2) act as "electron acceptors" responsible for the efficient separation of photogenerated charge carriers and the enhancement of photocatalytic activity. The proposed mechanism for the observed photocatalytic performance of C(60)/TiO(2) nanocomposites is further corroborated by experiments on hydroxyl radical and transient photocurrent response.  相似文献   

20.
化石燃料的快速消耗加速了全球能源危机和环境污染等问题.光催化产氢直接利用清洁和可持续的太阳能实现向化学燃料的转化,因而成为一种有前景的技术.众多半导体光催化剂中,二氧化钛因其高光催化活性、稳定的化学性质、低成本和无毒等优势而被广泛用作分解水产氢的光催化剂.最近,金红石相TiO2纳米晶体在某些情况下被证明具有光催化的潜力,然而其光生电子-空穴对的快速复合显著抑制了光催化效率.表面修饰、构建异质结和负载助催化剂等策略被用来提高光生载流子的分离效率以减少复合损失,从而提升光催化活性.由于光催化反应通常发生在光催化剂的表面活性位点上,因此通过改善表面性质改变电荷转移途径对光催化活性具有重要影响.磷酸、硫酸、硼酸和盐酸等无机酸的修饰可以改变光催化剂的表面基团,分别通过促进表面羟基的形成和氧气的吸附以及改变表面电荷性质更有效地捕获空穴,实现光生电子和空穴的分离,有助于光催化降解有机污染物.然而,这种影响机制显然不适用于光催化产氢体系,目前对无机酸修饰用于分解水产氢的研究鲜有报道.因此,通过酸改性策略制备高效产氢的光催化剂仍然是一个相当大的挑战.本文利用硝酸诱导策略合成纺锤状金红石相二氧化钛纳米束(R-TiO2).首先,制备层状质子化钛酸盐(LPT)作为TiO2的前体,随后,加入浓硝酸以诱导向金红石相TiO2的转变,并组装形成纺锤状纳米束.对照实验显示,硝酸的酸化可以诱导LPT向金红石相TiO2的转变,而相同条件下浓硝酸后处理不会引起晶相的转变.纺锤形纳米束的形成源于,硝酸诱导R-TiO2沿(110)方向生长并彼此粘附,硝酸诱导组装过程成功在TiO2表面修饰上硝酸根,同时扩大了光吸收范围,有效减少了电荷复合损失.光催化产氢测试证明了R-TiO2光催化剂具有高效的产氢性能,产氢速率为402.4μmol h-1,是Degussa P25的3.1倍,并且显著高于未经浓硝酸处理的锐钛矿(52.0μmol h^-1)或金红石相(110.8μmol h^-1)光催化剂.为了说明表面硝酸根的影响,分别从晶体和化学结构、形态以及表面电荷性质方面比较了光催化反应前后的变化,结果表明,R-TiO2增强的光催化效率可归因于硝酸根基团的负场效应,有利于在表面上捕获带正电的质子以促进载流子分离,提高光催化产氢的效率.总之,本工作不仅对于发展表面修饰策略制备高效产氢光催化剂的研究具有重要意义,而且提出了一种不同于文献报道的无机酸影响机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号