首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments were performed to determine the heat transfer and pressure drop characteristics in the entrance and fully developed regions of tubes with internal wave-like longitudinal fins. The test tube has a double-pipe structure, with the inner tube as an insertion. The wave-like fins are in the annulus and span its full width. Experiments were conducted for two cases: one with the inner tube blocked (no air flowing through it) and the other with the inner tube unblocked. The outer tube was electrically heated. Local and average heat transfer coefficients and friction factors were measured. The friction factor and Nusselt number correlations in the fully developed region were obtained in the Reynolds number range of 9×102 to 3.5×103. It has been found that the wave-like fins enhance heat transfer significantly with the blocked case being superior. In addition, the in-tube heat transfer process is characterized by an earlier transition from laminar to turbulent flow and Reynolds number-dependent thermal entrance length. Received on 12 May 1998  相似文献   

2.
Laminar-to-turbulent flow transition in microchannels can be useful to enhance mixing and heat transfer in microsystems. Typically, the small characteristic dimensions of these devices hinder in attaining higher Reynolds numbers to limit the total pressure drop. This is true especially in the presence of a liquid as a working medium. On the contrary, due to lower density, Reynolds number larger than 2000 can be easily reached for gas microflows with an acceptable pressure drop. Since microchannels are used as elementary building blocks of micro heat exchangers and micro heat-sinks, it is essential to predict under which conditions, the laminar-to-turbulent flow transition inside such geometries can be expected. In this paper, experimental validation of a two equations transitional turbulence model, capable of predicting the laminar-to-turbulent flow transition for internal flows as proposed by Abraham etal. (2008), is presented for the first time for microchannels. This is done by employing microchannels in which Nitrogen gas is used as a working fluid. Two different cross-sections namely circular and rectangular are utilized for numerical and experimental investigations. The inlet mass flow rate of the gas is varied to cover all the flow regimes from laminar to fully turbulent flow. Pressure loss experiments are performed for both cross-sectional geometries and friction factor results from experiments and numerical simulations are compared. From the analysis of the friction factor as a function of the Reynolds number, the critical value of the Reynolds number linked to the laminar-to-turbulent transition has been determined. The experimental and numerical critical Reynolds number for all the tested microchannels showed a maximum deviation of less than 12%. These results demonstrate that the transitional turbulence model proposed by Abraham etal. (2008) for internal flows can be extended to microchannels and proficiently employed for the design of micro heat exchangers in presence of gas flows.  相似文献   

3.
The periodically fully developed laminar heat transfer and fluid flow characteristics inside a two-dimensional wavy channel in a compact heat exchanger have been numerically investigated. Calculations were performed for Prandtl number 0.7, and Reynolds number ranging from 100 to 1,100 on non-orthogonal non-staggered grid systems, based on SIMPLER algorithm in the curvilinear body-fitted coordinates. Effects of wavy heights, lengths, wavy pitches and channel widths on fluid flow and heat transfer were studied. The results show that overall Nusselt numbers and friction factors increase with the increase of Reynolds numbers. According to the local Nusselt number distribution along channel wall, the heat transfer may be greatly enhanced due to the wavy characteristics. In the geometries parameters considered, friction factors and overall Nusselt number always increase with the increase of wavy heights or channel widths, and with the decrease of wavy lengths or wavy pitches. Especially the overall Nusselt number significantly increase with the increase of wavy heights or channel widths, where the flow may become into transition regime with a penalty of strongly increasing in pressure drop. An erratum to this article can be found at  相似文献   

4.
Three-dimensional turbulent forced convective heat transfer and flow characteristics, and the non-dimensional entropy generation number in a helical coiled tube subjected to uniform wall temperature are simulated using the k–ε standard turbulence model. A finite volume method is employed to solve the governing equations. The effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor and Nusselt number are discussed. The results presented in this paper cover a Reynolds number range of 2 × 104 to 6 × 104, a pitch range of 0.1–0.2 and a curvature ratio range of 0.1–0.3. The results show that the coil pitch, curvature ratio and Reynolds number have different effects on the average friction factor and Nusselt number at different cross-sections. In addition, the flow and heat transfer characteristics in a helical coiled tube with a larger curvature ratio for turbulent flow are different from that of smaller curvature ratio for laminar and turbulent flow in certain ways. Some new features that are not obtained in previous researches are revealed. Moreover, the effects of Reynolds number, curvature ratio, and coil pitch on the non-dimensional entropy generation number of turbulent forced convection in a helical coiled tube are also discussed.  相似文献   

5.
The characteristics of a gaseous flow of nitrogen in commercial stainless steel microtubes for gas chromatography having a nominal inner diameter of 762, 508, 254 and 127 μm are experimentally investigated. The friction factor is calculated as a function of the Reynolds number and plotted in a Moody chart. A comparison among three different methods to calculate the friction factor is made in order to evidence limitations and advantages of each method. It was observed that in the laminar regime the Poiseuille law correctly predicts the value of the pressure drop. It has been evidenced that in order to make accurate experiments on the frictional characteristics of commercial microtubes the value of the inner diameter given by the manufacturer has to be always verified. The experimental data presented in this work remark how in microtubes the compressibility effects related to the axial variation of the gas density tend to become important at large Reynolds numbers and small diameters even if the average Mach number is low. The effects due to the gas acceleration on the laminar-to-turbulent transition in microtubes are investigated by evidencing the role of the L/D (length to diameter) ratio on the transition to turbulence. No early transition to turbulence has been evidenced in the tests, instead it takes place at Reynolds numbers ranging between 1800 and 2900.  相似文献   

6.
The equation for the turbulent viscosity is used to investigate the developed flow of a conductive fluid in a longitudinal magnetic field. The solution of this equation is analyzed in the transition region from laminar to turbulent flow. The influence of the magnetic field on the local and integrated flow characteristics is studied. The convective heat exchange is computed in the case of liquid-metal flow with constant heat flux to the wall. It is shown that the computed results are in good agreement with the results of experiments in a broad range of variation of the governing parameters.  相似文献   

7.
The boundary layer which represents the narrow zone between a solid body and the free stream can have a laminar or a turbulent state. This state influences on the one hand the properties of the near-wall flow like skin friction or heat transfer and on the other hand also the free-stream flow itself, e.g. the downstream flow angle of a turbomachinery blade. Thus it is important for designers of fluid machinery to understand and predict the state of the boundary layer as well as the transition processes between the two states.In this work the so-called relaminarization is investigated which represents a reverse transition from a turbulent to a laminar boundary layer. At the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology a test bench has been designed in order to produce a highly accelerated flow, thus triggering relaminarization. In the present work, the flow in this test bench is numerically investigated with Reynolds-averaged Navier-Stokes (RANS) flow simulation as well as with a large eddy simulation (LES).An outcome of this paper is, that the LES shows a very good agreement to the measurement results and is capable of predicting relaminarization.  相似文献   

8.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all.  相似文献   

9.
Calculated and experimental data on turbulent transition in a circular pipe are analyzed. The calculations were performed using the three-parameter turbulence model. The dependence of the distance from the inlet to the point of minimum friction during transition on the Reynolds number for fixed inlet conditions and the distribution of the turbulence parameters over the pipe length and radius are obtained. The dependence of the maximum (critical) Reynolds number, Re*, for which there is no transition in the pipe, on the inlet intensity and scale of turbulence is found. It is suggested that Re* depends on the inlet perturbation parameters up to Re* = 1000, where the friction coefficients for laminar and turbulent flows coincide.  相似文献   

10.
Fluid flow and heat transfer of mixed convection from a constant wall temperature circular cylinder in zero-mean velocity oscillating cooling flows have been simulated based on the projection method with two dimensional exponential stretched staggered cylindrical meshes. Cycle mean temperature and secondary streaming are obtained by the method of partial sums of the Fourier series. Present numerical results are validated by comparing the heat transfer results of free convection and the secondary streaming of pure oscillating flow over a circular cylinder to published experimental and numerical results. The complete structures of the cycle mean temperature and secondary streaming patterns are provided by numerical simulations over wide ranges of the Reynolds number, the Keulegan–Carpenter number and the Richardson number. Based on turning points of the curves of the overall Nusselt numbers versus Reynolds numbers and the characteristics of the cycle averaged temperature and flow patterns, the heat transfer can be divided into three linear regimes (conduction, laminar convection, and turbulent convection dominated regimes) and two non-linear transition regimes. The effects of wave directions, amplitudes, frequencies, and buoyancy forces on the enhancement of heat transfer are also investigated. The effective ranges of the governing parameters for heat transfer enhancement are identified.  相似文献   

11.
The velocity distribution in laminar upward flow of water (Pr 7.25) in the entry of a vertical internally heated annulus (radius ratio 4:1) has been determined by visual observation. Photographic measurements have been made of the motion of hydrogen bubble clusters, which were generated by a carefully controlled process of electrolysis, to assess the effects of free convection effects on the forced flow.For heat fluxes up to 2500 W/m2 and at a Reynolds number of approximately 450, local heat transfer coefficients have been obtained in a length of about 23 equivalent diameters. Heat transfer rate in the immediate entry was found to be insensitive to change in heat flux over the range of variables considered. As the distance downstream increased, the heat transfer rate was found to be dependent on the heat flux.  相似文献   

12.
Results are presented of an experimental investigation into the influence on flow resistance of flow conditioning prior to the entry region of a circular sectioned tube rotating about an axis parallel to its central axis of symmetry. This investigation is part of a long term study into the effect of rotation on pressure loss and heat transfer characteristics in rotating coolant channels. It is shown that for fully developed flow, rotation has little significant effect on flow resistance in the normal laminar and turbulent zones. The transition region is, however, affected; the usual ‘dip’ in friction factor is replaced by a smoother transition from laminar to turbulent flow. For developing flow, however, it has been shown that rotation can significantly increase the flow resistance above the normal stationary correlations. This increase can be reduced by smoothing the flow with gauzes and flow straightening honeycombs prior to the entry region of the tube.  相似文献   

13.
Three-dimensional laminar forced convection including steady-periodic transition is investigated up to periodic-chaotic transition in the fully developed region of coolant passages with staggered arrays of pin fins. Comparative examples concern overall pressure losses and heat transfer characteristics of circular, square and elliptical pins made of nickel and copper. In the numerical model, transient conjugate heat transfer is assumed and space periodicities in pressure, velocity components and temperatures are taken into account. In the range of operative conditions investigated, overall friction factors increase almost linearly with the Reynolds number, while the increase of overall Nusselt numbers with the Reynolds number is characterized by two slope changes connected with the onset of streamwise vortices, and the shedding of transverse vortices, respectively. The use of copper, instead of nickel, increases the overall Nusselt number with all shapes, but is particularly beneficial to the elliptical section. Square pins are characterized by the highest values of friction factors, but are also the best performers as far as convection enhancing is concerned. The reverse is true for the elliptical pins which are characterized by the lowest values of friction factors, but are the worst performers as far as convection enhancing is concerned. On the basis of overall performances, the elliptical pins made of copper are the best choice, at least in the upper range of Reynolds numbers investigated.  相似文献   

14.
The flow bifurcation scenario and heat transfer characteristics in grooved channels, are investigated by direct numerical simulations of the mass, momentum and energy equations, using the spectral element methods for increasing Reynolds numbers in the laminar and transitional regimes. The Eulerian flow characteristics show a transition scenario of two Hopf bifurcations when the flow evolves from a laminar to a time-dependent periodic and then to a quasi-periodic flow. The first Hopf bifurcation occurs to a critical Reynolds number Rec1 that is significantly lower than the critical Reynolds number for a plane-channel flow. The periodic and quasi-periodic flows are characterized by fundamental frequencies ω1 and m· ω1+n·ω2, respectively, with m and n integers. Friction factor and pumping power evaluations demonstrate that these parameters are much higher than the plane channel values. The time-average mean Nusselt number remains mostly constant in the laminar regime and continuously increases in the transitional regime. The rate of increase of this Nusselt number is higher for a quasi-periodic than for a periodic flow regime. This higher rate originates because better flow mixing develops in quasi-periodic flow regimes. The flow bifurcation scenario occurring in grooved channels is similar to the Ruelle-Takens-Newhouse transition scenario of Eulerian chaos, observed in symmetric and asymmetric wavy channels.  相似文献   

15.
This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42×10 6 to 0.84 × 10 6 and the reduced frequency was varied from 0.01 to 0.11.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.  相似文献   

16.
The linear stability of a flexible, cylindrical rod subjected to annular leakage flow is studied. The mathematical models developed by Li, Kaneko, and Hayama in 2002 and Fujita and Shintani in 2001 are bridged and extended, to account for a flexible rod with equilibrium offset (eccentricity) in laminar or turbulent leakage flow. Stability characteristics are analyzed numerically for a variety of configurations. It is found that simply supported rods may become unstable at a certain critical flow speed by either divergence or flutter, depending on dimensions and fluid/solid properties. It is furthermore found that the critical flow speed is quite insensitive to use of a laminar friction model at high Reynolds numbers in cases of divergence, but sensitive to it in cases of flutter. These findings are verified analytically though analysis of an energy equation. This equation shows that (i) divergence instability is independent of fluid friction; (ii) flutter instability is caused solely by fluid friction. It also suggests a possible explanation to the question of why a ‘wrong’ fluid friction assumption gives a too large critical flow speed in cases of flutter instability at a high Reynolds number.  相似文献   

17.
Three dimensional numerical studies were performed for laminar heat transfer and fluid flow characteristics of wavy fin heat exchangers with elliptic/circular tubes by body-fitted coordinates system. The simulation results of circular tube were compared with the experiment data, then circular and elliptic (e = b/a = 0.6) arrangements with the same minimum flow cross-sectional area were compared. A max relative heat transfer gain of up to 30% is observed in the elliptic arrangement, and corresponding friction factor only increased by about 10%. The effects of five factors on wavy fin and elliptic tube heat exchangers were examined: Reynolds number (based on the smaller ellipse axis, 500  4000), eccentricity (b/a, 0.6  1.0), fin pitch (Fp/2b, 0.05  0.4), fin thickness (Ft/2b, 0.006  0.04) and tube spanwise pitch (S1/2b, 1.0  2.0). The results show that with the increasing of Reynolds number and fin thickness, decreasing of the eccentricity and spanwise tube pitch, the heat transfer of the finned tube bank are enhanced with some penalty in pressure drop. There is an optimum fin pitch (Fp/2b = 0.1) for heat transfer, but friction factor always decreases with increase of fin pitch. And when Fp/2b is larger than 0.25, it has little effects on heat transfer and pressure drop. The results were also analyzed from the view point of field synergy principle. It was found that the effects of the five factors on the heat transfer performance can be well described by the field synergy principle.  相似文献   

18.
In the present study, fully developed laminar flow and heat transfer in a helically coiled tube with uniform wall temperature have been investigated analytically. Expressions involving relevant variables for entropy generation rate contributed to heat transfer and friction loss, and total entropy generation rate have been derived. The effect of various flow and coil parameters like Reynolds number, curvature ratio, coil pitch, etc. on the entropy generation rate has been studied for two fluids- air and water. The results of the present study have been compared to the corresponding entropy generation values of straight pipe. Investigating the results, some optimum values for Reynolds number have been proposed and compared with the optimum Reynolds numbers of laminar flow inside a coiled tube subjected to constant heat flux boundary condition.  相似文献   

19.
Heat transfer and pressure drop characteristics in the annulus of concentric helical coils heat exchangers were experimentally investigated. The effects of coil curvature ratio, flow configuration, number of turns and addition of surfactant were investigated. Five test coils were designed and manufactured to study the effect of different parameters on heat transfer and pressure drop. The liquids used in the present study were water and oleyl-dihydroxy-etheyl-amine-oxide (ODEAO, C22H45NO3 = 371) non-ionic aqua surfactant solution flowing through the annulus side. The inner side Reynolds number range 11,000–27,000 and the annulus side range 5,000–19,000. The results showed that the annulus Nusselt number decreases as annulus curvature ratio increases and increases when number of turns decrease. Moreover, the friction factor increases with the curvature ratio and also increases as number of turns decreases. Both Nusselt number and friction factor decrease when ODEAO concentration increases.  相似文献   

20.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号