首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density (ρ), viscosity (η), and surface tension (γ) for 0.005–0.25 mol ⋅ kg−1 solutions of urea, 1-methylurea, and 1,3-dimethylurea solutions have been measured at intervals of 0.005 mol ⋅ kg−1. Apparent molal volume (V o, cm3 ⋅ mol−1) and intrinsic viscosity coefficients (B and D) are calculated from the ρ and η values, respectively. Primary data were regressed and extrapolated to zero concentration for the limiting density (ρ 0), apparent molal volume (V φ 0), viscosity (η 0), and surface tension (γ 0) values for solute–solvent interactions. The –CH3 (methyl) groups of N-methylureas weaken hydrophilic interactions and enhance hydrophobic interactions, and the values of the ρ 0 and V φ o reflect the intermolecular forces due to electrostatic charge, whereas the η 0 and γ 0 values reflect the frictional and surface forces. The B values depict the size of hydrodynamic sphere due to heteromolecular forces whereas D shows the effect of concentration. The molar surface energy (ΔE m/sur) for dropwise flow was calculated from the γ values and decreases with concentration and temperature, but increases with –CH3 weakening of the hydrophilic interactions and strengthening the hydrophobic interactions.  相似文献   

2.
Rate constants for the reaction of carbonate radical with aniline and some parasubstituted anilines have been determined by the flash photolysis technique. Using σ+ para values the rate constants at pH 8.5 correlate very well with the Hammett equation yielding ρ= − 1. The carbonate radical oxidises aniline giving the anilino radical. The products so formed have been identified through studies under conditions of continuous irradiation.  相似文献   

3.
The protonation constants for oxidized glutathione, H i−1L(4−i+1)−, K i H=[H i L(4−i)−]/[H i−1L(4−i+1)−][H+] i=1,2,…,6 have been measured at 5, 25 and 45 °C as a function of the ionic strength (0.1 to 5.4 mol⋅[kg(H2O)]−1) in NaCl solutions. The effect of ionic strength on the measured protonation constants has been used to determine the thermodynamic values (K i H0) and the enthalpy (ΔH i ) for the dissociation reaction using the SIT model and Pitzer equations. The SIT (ε) and Pitzer parameters (β (0), β (1) and C) for the dissociation products (L4−, HL3−, H2L2−, H3L, H4L, H5L+, H6L2+) have been determined as a function of temperature. These results can be used to examine the effect of ionic strength and temperature on glutathione in aqueous solutions with NaCl as the major component (body fluids, seawater and brines).  相似文献   

4.
The kinetics of oxidation of phenol and a few ring-substituted phenols by heteropoly 11-tungstophosphovanadate(V), [PVVW11O40]4− (HPA) have been studied spectrophotometrically in aqueous acidic medium containing perchloric acid and also in acetate buffers of several pH values at 25 °C. EPR and optical studies show that HPA is reduced to the one-electron reduced heteropoly blue (HPB) [PVIVW11O40]5−. In acetate buffers, the build up and decay of the intermediate biphenoquinone show the generation of phenoxyl radical (ArO·) in the rate-determining step. At constant pH, the reaction shows simple second-order kinetics with first-order dependence of rate on both [ArOH] and [HPA]. At constant [ArOH], the rate of the reaction increases with increase in pH. The plot of apparent second-order rate constant, k 2, versus 1/[H+] is linear with finite intercept. This shows that both the undissociated phenol (ArOH) and the phenoxide ion (ArO) are the reactive species. The ArO–HPA reaction is the dominant pathway in acetate buffer and it proceeds through the OH ion triggered sequential proton transfer followed by electron transfer (PT-ET) mechanism. The rate constant for ArO–HPA reaction, calculated using Marcus theory, agrees fairly well with the experimental value. The reactivity of substituted phenoxide ions correlates with the Hammett σ+ constants, and ρ value was found to be −4.8. In acidic medium, ArOH is the reactive species. Retardation of rate for the oxidation of C6H5OD in D2O indicates breaking of the O–H bond in the rate-limiting step. The results of kinetic studies show that the HPA-ArOH reaction proceeds through a concerted proton-coupled electron transfer mechanism in which water acts as proton acceptor (separated-CPET).  相似文献   

5.
Fundamental properties, density (ρ) and viscosity (η), of citric acid (CA) and disodium hydrogen orthophosphate (DSP) at various strengths were obtained at different temperatures. The ρ and η values were used to determine apparent molal volumes and viscosity of systems. The ρ, VΦ and η values were regressed against molalitym for ρ0, η0 and V Φ 0 , the limiting constants at infinite dilution (m → 0) for ionic and molecular interactions. The ρ0 and V Φ 0 of aq. acids are higher than those of aq. DSP and the viscosity of DSP is higher than that of aq. CA. Examination of ρ0 and V Φ 0 functions indicates that mutual compositions of CA and DSP counterbalance concentration and temperature effects on pH in bioprocesses.  相似文献   

6.
The rate constants of the reactions of the chlorine atom with C3F7I (k 1) and CF3I (k 2) have been measured using the resonance fluorescence of chlorine atoms in a flow reactor at 295 K: k 1 = (5.2 ± 0.3) × 10−12 cm3 molecule−1 s−1 and k 2 = (7.4 ± 0.6) × 10−13 cm3 molecule−1 s−1. No iodine atoms have been detected in the reaction products.  相似文献   

7.
CO activation in the [Ru(NH3)5CO]2+ ion has been demonstrated under nucleophilic conditions in pyridine or 2-ethoxyethanol solution at 100 °C. In the presence of Me3NO the observed pseudo-first order rate constants were found to be sensitive only to auxiliary ligand concentration (pyridine or methyl pyridines), but with a tendency towards rate saturation and the same limiting rate at large excess of each entering ligand. A mechanism is proposed in which the rate-limiting step is viewed as an auxiliary ligand-assisted CO2 elimination, preceded by a fast reversible addition of Me3NO. This reaction pathway is also supported by the values determined for ΔH (81 ± 13 kJ mol−1) and ΔS (−114 ± 36 J mol−1 K−1). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.

Abstract  

Iron(III)–salen complexes catalyze the H2O2 oxidation of various ring-substituted anilines in MeCN have been studied, and [O=FeIV(salen)] is proposed as the active species. Study of the kinetics of the reaction by spectrophotometry shows the emergence of a new peak at 445 nm in the spectrum which corresponds to azobenzene. Further oxidation of azobenzene by H2O2 leads to the formation of azoxybenzene. ESI–MS studies also support the formation of these products. The rate constants for the oxidation of meta- and para-substituted anilines were determined from the rate of decay of oxidant as well as the rate of formation of azobenzene, and the reaction follows Michaelis–Menten kinetics. The rate data show a linear relationship with the Hammett σ constants and yield a ρ value of −1.1 to −2.4 for substituent variation in the anilines. A reaction mechanism involving electron transfer from aniline to [O=Fe(salen)] is proposed. The presence of axial ligands modulates the activity of the complex.  相似文献   

9.
Rate constants for reactions of 2-pyridinol with one electron reductants, such ase aq and H atoms and one-electron oxidants, viz. OH, N3, Br 2 , C1 2 and O have been determined at different pH values using the pulse radiolysis technique. From the corrected absorption spectra of the product transient species, the extinction coefficients of these species at their respective absorption maxima have been determined. The kinetics of decay of these transients have been investigated. ThepK a values of transients formed bye aq and OH radical reactions have been estimated to be 7.6 and 3.5 respectively. Rate constants for electron transfer from semireduced 2-pyridinol to different electron acceptors have been determined.  相似文献   

10.
Hydrogen bonding interactions between thymine nucleobase and 2′-deoxythymidine nucleoside (dT) with some biological anions such as F (fluoride), Cl (chloride), OH (hydroxide), and NO3 (nitrate) have been explored theoretically. In this study, complexes have been studied by density functional theory (B3LYP method and 6-311++G (d,p) basis set). The relevant geometries, energies, and characteristics of hydrogen bonds (H-bonds) have been systematically investigated. There is a correlation between interaction energy and proton affinity for complexes of thymine nucleobase. The nature of all the interactions has been analyzed by means of the natural bonding orbital (NBO) and quantum theory atoms in molecules (QTAIM) approaches. Donors, acceptors, and orbital interaction energies were also calculated for the hydrogen bonds. Excellent correlations between structural parameter (δR) and electron density topological parameter (ρ b) as well as between E(2) and ρ b have been found. It is interesting that hydrogen bonds with anions can affect the geometry of thymine and 2′-deoxythymidine molecules. For example, these interactions can change the bond lengths in thymine nucleobase, the orientation of base unit with respect to sugar ring, the furanose ring puckering, and the C1′–N1 glycosidic linkage in dT nucleoside. Thus, it is necessary to obtain a fundamental understanding of chemical behavior of nucleobases and nucleosides in presence of anions.  相似文献   

11.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

12.
Heavy metals can be removed from effluents and recovered using physico-chemical mechanisms as biosorption processes. In this work “Arribada” seaweed biomass was employed to assess its biosorptive capacity for the chromium (Cr3+) and lead (Pb2+) cations that usually are present in waste waters of plating industries. Equilibrium and kinetic experiments were conducted in a mixed reactor on a batch basis. Biosorption equilibrium and fluid-solid mass transfer constants data were analyzed through the concept of ion exchange sorption isotherm. The respective equilibrium exchange constants (K eqCr=173.42, K eqPb=58.86) and volumetric mass transfer coefficients ((k mCr a)′=1.13×10−3 s−1, (k mPb a)′=0.89×10−3 s−1) were employed for the dynamic analysis of Cr and Pb sorption in a fixed-bed flow-through sorption column. The breakthrough curves obtained for both metals were compared with the predicted values by the heterogeneous model (K eqCr=171.29, K eqPb=60.14; k mCr a=7.81×10−2 s−1, k mPb a=2.43×10−2 s−1), taking into account the mass transfer process. The results suggest that these algae may be employed in a metal removal/recovery process at low cost. An erratum to this article can be found at  相似文献   

13.
The equivalent conductivities of tris-(ethylenediamine)chromium complexes, [Cr(en)3]X3 (where X= Cl, Br, I; en = ethylenediamine) were measured as functions of temperature (278.15 to 328.15 K) and concentration [(1.948 ×10−4 to 10.728 ×10−4 mol⋅dm−3) and (2.282 ×10−4 to 11.246 ×10−4 mol⋅dm−3)] in N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMAC), respectively. Equivalent conductivity values for [Cr(en)3]X3 in DMF were found to be higher than those in DMAC. The conductivity data were analyzed with the Robinson-Stokes equations. For [Cr(en)3]X3, the limiting equivalent ionic conductivities of [Cr(en)3]3+ and the ion-association constants (K A) of the ion-pair between [Cr(en)3]3+ and the monovalent halide anions were determined in DMF and DMAC. The values of K A for three complex salts in DMF were higher than those in DMAC. This can be ascribed to an increase of the ion-association constants with a decrease of the relative permittivity of the solvents. The values of K A at 298.15 K decreased in the order Cl> Br> I in DMF and Cl> I> Br in DMAC. The K A values for [Cr(en)3]Cl3 increased with increasing temperature in both DMF and DMAC. For [Cr(en)3]X3(X= Br, I) in both solvents, this indicates increasing disorder occurs with increasing temperature. Thermodynamic parameters (standard Gibbs energy, enthalpy and entropy changes) were determined from the temperature dependence of K A in DMF and DMAC. These parameters were inter-compared in their dependences on temperature and solvent.  相似文献   

14.
Summary.  Nitrosation reactions of phenol, o-cresol, 2,6-dimethylphenol, o-tert-butylphenol, 2-hydroxyacetophenone, and 2-allylphenol in water and water/acetonitrile were studied. Kinetic monitoring of the reactions was accomplished by spectrophotometric analysis of the nitrosated products at 345 nm. The dominant reaction was C-nitrosation via a mechanism consisting of an attack on the nitrosatable substrate by NO+/NO2H2 + followed by a slow proton transfer. The values of the rate constants of phenolic C-nitrosation were increased by electron donating substituents, and a good Hammett correlation was observed with ρ = −6.1. The results also revealed the strong effect of pH and the permitivity of the reaction medium on the rate constant, whose maximum values were observed for pH ≈ 3, decreasing strongly for higher pH values. The study in water/acetonitrile with up to 25% acetonitrile showed that it is possible to inhibit the reaction strongly by increasing the percentage of the organic component. The conclusions drawn show that (i) it is possible to predict the rate of nitrosation of phenolics as a function of the meta-substituents on the phenol ring and (ii) the nitrosation of phenolics can be strongly inhibited by increasing the pH of the reaction medium as well as by lowering its dielectric constant. Received July 13, 2001. Accepted (revised) September 18, 2001  相似文献   

15.
 Nitrosation reactions of phenol, o-cresol, 2,6-dimethylphenol, o-tert-butylphenol, 2-hydroxyacetophenone, and 2-allylphenol in water and water/acetonitrile were studied. Kinetic monitoring of the reactions was accomplished by spectrophotometric analysis of the nitrosated products at 345 nm. The dominant reaction was C-nitrosation via a mechanism consisting of an attack on the nitrosatable substrate by NO+/NO2H2 + followed by a slow proton transfer. The values of the rate constants of phenolic C-nitrosation were increased by electron donating substituents, and a good Hammett correlation was observed with ρ = −6.1. The results also revealed the strong effect of pH and the permitivity of the reaction medium on the rate constant, whose maximum values were observed for pH ≈ 3, decreasing strongly for higher pH values. The study in water/acetonitrile with up to 25% acetonitrile showed that it is possible to inhibit the reaction strongly by increasing the percentage of the organic component. The conclusions drawn show that (i) it is possible to predict the rate of nitrosation of phenolics as a function of the meta-substituents on the phenol ring and (ii) the nitrosation of phenolics can be strongly inhibited by increasing the pH of the reaction medium as well as by lowering its dielectric constant.  相似文献   

16.
The multiple-channel reactions OH + SiH(CH3)3 → products (R1) and the single-channel reaction OH + Si(CH3)4 → Si(CH3)3CH2 + H2O (R2) have been studied by means of the direct dynamics method at the BMC-CCSD//MP2/6-311+G(2d,2p) level. The optimized geometries, frequencies and minimum energy path are all obtained at the MP2/6-311+G(2d,2p) levels, and energy information is further refined by the BMC-CCSD (single-point) level. The rate constants for every reaction channels are calculated by canonical variational transition states theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range 200–2,000 K. The theoretical total rate constants are in good agreement with the available experimental data, and the three-parameter expression k 1 = 2.53×10−21 T 3.14 exp(1, 352.86/T), k 2 = 6.00 × 10−19 T 2.54 exp(−106.11/T) (in unit of cm3 molecule−1 s−1) over the temperature range 200–2,000 K are given. Our calculations indicate that at the low temperature range, for reaction R1, H-abstraction is favored for the SiH group, while the abstraction from the CH3 group is a minor channel. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Kinetics of oxidation of dl-pipecolinate by bis(hydrogenperiodato)argentate(III) complex anion, [Ag(HIO6)2]5−, has been studied in aqueous alkaline medium in the temperature range of 25–40 °C. The oxidation kinetics is first order in the silver(III) and pipecolinate concentrations. The observed second-order rate constant, decreasing with increasing [periodate] is virtually independent of [OH]. α-Aminoadipate as the major oxidation product of pipecolinate has been identified by chromatographic analysis. A reaction mechanism is proposed that involves a pre-equilibrium between [Ag(HIO6)2]5− and [Ag(HIO6)(H2O)(OH)]2−, a mono-periodate coordinated silver(III) complex. Both Ag(III) complexes are reduced in parallel by pipecolinate in rate-determining steps (described by k 1 for the former Ag(III) species and k 2 for the latter). The determined rate constants and their associated activation parameters are k 1 (25 °C) = 0.40 ± 0.02 M−1 s−1, ∆H 1 = 53 ± 2 kJ mol−1, ∆S 1 = −74 ± 5 J K−1 mol−1 and k 2 (25 °C) = 0.64 ± 0.02 M−1 s−1, ∆H 2 = 41 ± 2 kJ mol−1, ∆S 2 = −110 ± 5 J K−1 mol−1. The time-resolved spectra, a positive dependence of the rate constants on ionic strength of the reaction medium, and the consistency of pre-equilibrium constants derived from different reaction systems support the proposed reaction mechanism.  相似文献   

18.
The dynamical behavior of ethylene and ethane confined inside single-walled carbon nanotubes has been studied using Molecular Dynamics and a fully atomistic force field. Simulations were conducted at 300 K in a broad range of molecular densities, 0.026 mol⋅L−1<ρ<15.751 mol⋅L−1(C2H4) and 0.011 mol⋅L−1<ρ<14.055 mol⋅L−1(C2H6), and were oriented towards the determination of bulk and confined phase self-diffusion coefficients. In the infinite time limit, Fickian self-diffusion is the dominant mode of transport for the bulk fluids. Upon confinement, there is a density threshold (ρ=5.5 mol⋅L−1) below which we observe a mixed mode of transport, with contributions from Fickian and ballistic diffusion. Nanotube topology seems to have only a small influence on the confined fluids’ dynamical properties; instead density (loading capacity) assumes the dominant role. In all cases studied and at a given density, the diffusivities of ethylene are larger than those of ethane, although the difference is relatively minor. We note the collapse of self-diffusivities obtained from the bulk fluids and confined phases into a unique single trend. These results suggest that it might be possible to infer dynamical properties of confined fluids from the knowledge of their bulk phase densities. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
The results of our experimental studies and an analysis of the published data on the rate constant for the reaction Fe + O2 = FeO + O in the forward (I) and reverse (−I) direction are reported. The data obtained in this work are described by the expressions k 1 = 6.2 × 1014exp(−11100 K/T) cm3 mol−1 s−1 and k −1 = 6.0 × 1013exp(−588 K/T) cm3 mol−1 s−1 (T = 1500–2500 K). The generalized expressions for the temperature dependences of these rate constants derived by combining our results with the literature data can be presented as k 1 = 9.4 × 1014(T/1000)0.022exp(−11224 K/T) cm3 mol−1 s−1 (T = 1500–2500 K) and k −1 = 1.8 × 1014(1000/T)0.37exp(−367 K/T) cm3 mol−1 s−1 (T = 200–2500 K).  相似文献   

20.
The decomposition studies of S-nitrosothiols (RSNO) are important due to their potential role in vivo in connection with the storage and transport of nitric oxide (NO) within the body. Reactions of hydroxyl radicals (OH) with a number of RSNOs (S-nitroso derivatives of N-acetyl-dl-penicillamine, l-cysteinemethylester, N-acetylcysteamine, and dl-penicillamine) in aqueous medium at neutral and acidic pH have been reported in the present study. Radiation chemical technique (steady state and pulse radiolysis) has been utilized for the determination of the reaction rate constants, the end product analyses, and the transient intermediate species. The rate constants for the reaction of OH with the selected RSNOs were determined using a competition kinetic method with 2′-deoxy-d-ribose as the competitor. All the rate constants were found to be of the order of diffusion controlled (1010 M−1 s−1). The degradation yield of RSNOs was found to be quantitative (i.e., G(–RSNO) ≈ G(OH)) at neutral and acidic pH. The major products of decomposition were the respective disulfide (RSSR) and nitrite (NO2 ). A good material balance is also obtained between the degradation yield and the formation of the products (i.e., G(–RSNO) ≈ G(RSSR) + G(NO2 )). The major transient intermediate was the thiyl radical (RS). Its intermediacy was confirmed by making use of the electron transfer reaction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS2−) to RS, which results in the formation of ABTS•− having a transient absorption spectrum with λmax at 410 nm. Based on these results, a generalized reaction mechanism is deduced for the reaction of OH with RSNO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号